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Abstract

Ceramic blocks are bricks of complicated geometry: They consist
of several air cavities and the brick material itself. In order to investi-
gate their behavior with respect to heat conduction, Fourier’s PDE is
considered for the steady-state case: div(λ∇T ) = 0 , where T denotes
the temperature. The thermal conductivity λ is a piecewise-constant
function that assumes only two different values according to air and
stone. Micro-convection and cavity radiation are both neglected within
the model.

As a finite element (FE) discretization, we take a hierarchical sy-
stem of squares with bilinear ansatz functions on the individual ele-
ments. Nodes that belong not only to the finest grid level exhibit more
than one degree of freedom, i.e. for the representation of the solution
we use a generating system instead of a basis. The linear equations
resulting from the FE approach are solved by a special kind of mul-
tigrid algorithm that performs relaxed Jacobi iterations on all levels
of the grid simultaneously. Due to the jumps in the coefficient λ, the
crucial point is to determine the correct diagonal elements of the in-

termediate stiffness matrices for the coarser levels. They are essential
for good convergence properties.

Obtaining the temperature distribution from the solution of the
PDE, we compute the so-called effective thermal conductivity of the
whole ceramic block and visualize the internal heat flux in some figu-
res.
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It is important to note that all the computations presented he-
re can be fed with data through an interface, that was developed
particularly for that purpose. This dialog allows the user to choo-
se between different geometries, set the thermal conductivities and
boundary conditions, adjust parameters for the algorithm and final-
ly to start the calculations. The visualization afterwards is controlled
through another interface window. In that way, even users without a
strong background in the underlying mathematics can perform their
own numerical experiments.

The algorithmic core of the program is based on peano3d – a soft-
ware code which was written within the frame of a PhD thesis at the
chair of Prof. Zenger from Technische Universität München. For the
computation of the ceramic blocks, it had to be adjusted and extended
mainly because of the non-constant coefficient λ.

In principle, all the ideas introduced here and especially the pro-
gram itself work in three space dimensions. However, most of the illu-
strations, computations and results in this paper are restricted to the
two-dimensional case.

1 Modelling

In scientific computing, the examination of a certain problem is always a
three-stage process. Foremost, we need to think about how to model the task
in the language of mathematics. Then, the next step is to discretize the ob-
tained (continuous) equations and solve them by an appropriate numerical
method. Finally, we have to present the results in an adequate way. This may
be done by giving some key values or by applying visualization techniques to
the computed dataset. According to this scheme, we start with introducing
two fundamental laws of heat conduction that will help us to translate the
ceramic block problem into mathematical equations:

By definition, heat is the energy that flows from the higher level of tempera-
ture to the lower (without any work being performed), whenever there exists
a temperature gradient inside a body. If we know the internal temperature
distribution for a given moment in time, we can calculate the heat flux q̇ in
every single point x by

Fourier’s law : q̇(x) = −λ∇T (x) , [λ] =
W

mK
. (1)
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Note that Fourier’s law gives us information about both direction and ma-
gnitude of the heat flux. The constant of proportionality λ is called thermal

conductivity and strongly depends on the material. In the absence of heat
sources and sinks respectively, the diffusive heat entry into a volume incre-
ment dV ,

Q̇net = div(λ∇T ) dV,

must be equal to the storage rate of thermal energy

Ḣst = cp dm
∂T

∂t
= ρ cp

∂T

∂t
dV,

where

• cp is the specific heat capacity ([cp] = kJ
kg K

),

• dm the mass of the volume dV ,

• ρ the density of the material and

• ∂T
∂t

the partial derivative of the temperature with respect to time.

This simple balance of Q̇net and Ḣst gives us

Fourier’s PDE : ρ cp

∂T

∂t
= div(λ∇T ) , (2)

which must be satisfied in every point x for every moment t. Since we only
treat the steady-state case ( ∂T

∂t
= 0) within the scope of this paper, the

derived PDE of Fourier (2) reduces to

div(λ(x)∇T (x)) = 0 ∀x ∈ Ω . (3)

The thermal conductivity is

λ(x) =

{

λbrick if x ∈ Ωbrick

λair if x ∈ Ωair
(λbrick � λair) . (4)

Here, the set Ω denotes the whole ceramic block, while Ωair and Ωbrick refer
to the cavities and the brick material respectively (cf. figure 1). On the upper
(y = y2) and lower (y = y1) part of the boundary, we prescribe Dirichlet con-
ditions T = Ti and T = To . They correspond to the temperature proportions
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Figure 1: The ceramic block 1NF

inside and outside of an imaginary room. For reasons of symmetry, it makes
sense to assume homogeneous Neumann boundary conditions

∂T

∂n
= 0 (5)

on the left (x = x1) and right (x = x2) hand side of the block. In expres-
sion (5), n denotes the outward normal vector. The aim is to calculate the
internal temperature distribution and hence

• the overall heat transfer rate through the ceramic block as well as

• the effective thermal conductivity which will be introduced later.

Remark: Using the model (3) and (4), we neglect all convection and ra-
diation processes inside the ceramic block, whereas its thermal conductivity
is represented by a piecewise-constant function, that exhibits jumps at the
transitions ∂Ωbrick ∩ ∂Ωair .

Alternative models: Assuming the air cavities to be a perfect heat insu-
lation, a simpler approach would be

div(λbrick∇T (x)) = λbrick 4T (x) = 0 ∀x ∈ Ωbrick

with
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∂T

∂n
(x) = 0 ∀x ∈ ∂Ωbrick ∩ ∂Ωair

as boundary conditions at the (originally internal) transitions. Notice that in
this case the domain on which the PDE shall be solved is just Ωbrick instead
of Ω.

2 Numerical computation

This section will explain how to transform problem (3) and (4) into the weak

formulation, how we choose the finite element discretization for this one and
finally how to solve the resulting system of linear equations using a special
type of the multigrid method.

As an appropriate ansatz space we take

V := {v ∈ H1(Ω) with v = 0 on ΓD},

where H1(Ω) is the Sobolev space and ΓD denotes the Dirichlet part of the
boundary. We multiply the original PDE (3) with an arbitrary element of V
and integrate over the whole domain Ω :

∫

Ω
v div(λ∇T ) dx = 0 ∀v ∈ V

Green’s formula – which can be considered as a multidimensional integration
by parts – helps us:

∫

Ω
v div(λ∇T ) dx =

∫

∂Ω
v λ

∂T

∂n
ds −

∫

Ω
λ (∇T )T (∇v) dx

= −
∫

Ω
λ (∇T )T (∇v) dx

The surface integral is equal to zero due to the homogeneous Neumann boun-
dary conditions and the fact that we demand the test function v to vanish
on those part ΓD of the boundary where the Dirichlet boundary conditions
have been declared.
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Now we are able to rewrite the original problem in the following way: Find
a function T ∈ TDir + V , so that

∫

Ω
λ (∇T )T (∇v) dx = 0 ∀v ∈ V (6)

The shift of the ansatz space V by TDir is necessary because of the inho-
mogeneity of the Dirichlet boundary condition. The function TDir is of the
form

TDir(x, y) = αy + β.

Figure 2 shows how it looks like. We will use exactly this function as an
initial guess in the iterative solver later.

Figure 2: The function TDir

Since the ansatz space V is an infinite-dimensional functional space, the
next step is to replace it by a finite one. To this end, we lay a fine grid Ωh

of squares over the domain Ω. Within each single element (square), bilinear
ansatz functions are taken. The local node numbering and the graphs of the
corresponding shape functions are depicted in figure 3. This particular FE
approach results in the following element stiffness matrix:

A
(e)
ij =

∫

(e)
λ(e) (∇φj)

T (∇φi) dx

⇒ A(e) =
λ(e)
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









4.0 −1.0 −1.0 −2.0
−1.0 4.0 −2.0 −1.0
−1.0 −2.0 4.0 −1.0
−2.0 −1.0 −1.0 4.0











, (7)
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Figure 3: Bilinear ansatz functions on squares

where we have supposed that the mesh is sufficiently fine so that it resolves
the material transitions accurately. The thermal conductivity inside a cell
shall be constant: λ = λ(e).

Remark: If we write the temperatures at the corners of an element – in
accordance with the introduced node numbering (see figure 3) – into a 4-
vector T (e) and calculate the product A(e) T (e), the individual components of
the resulting 4-vector can be interpreted as heat flows from the respective
nodes into the cell. On the other hand, the term A(e) T (e) represents the
contribution from this element to the residuals of the four degrees of freedom
in its corners. The overall residual of a node represents the net heat flow
from this node into its surroundings and is put together with the aid of the
cell residuals from the four neighboring elements (cf. figure 4). Since we are
looking for the steady-state temperature distribution, the iterative method
should ideally converge towards a state where all the net heat flows (i.e.
residuals) disappear.

Sketch of the algorithm: Besides the fine grid Ωh mentioned above we
introduce coarser grids Ω3h, Ω9h, . . . Each coarse grid cell consists of nine cells
that belong to the next finer level (this ratio of partitioning is due to technical
reasons). Notice that a temperature node of a coarse grid cell is a degree of
freedom on all finer cells beneath. The algorithm works in the following way:
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Figure 4: The overall residual in a node is assembled by the four correspon-
ding cell residuals. Notice the weighting factors for the temperature nodes
and their accordance with the entries in the element stiffness matrix.

1. On the coarsest grid level, we start the process of building up the
current approximation to the solution using the temperature values
from the initial guess TDir or a previous iteration.

2. Then we recursively go to the next finer grid level by performing in-
terpolation and adding so-called hierarchical surpluses, until we have
reached the finest level Ωh. Figure 5 shows the principle in one space
dimension. When we have descended to the lowest level, the built-up
function equals the current iterate.

Figure 5: Interpolation (blue) and adding of hierarchical surpluses (grey)

3. On the mesh Ωh, the residual res
(k)
h is computed and assembled (k de-

notes the current iterate).
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4. Restrict the residuals recursively to the coarser grids by using the
weighting factors in figure 6.

Figure 6: Weighting factors for restriction to the upper right coarse grid node

5. Perform an iteration step of the relaxed Jacobi method on all levels
simultaneously: T

(k+1)
lh = T

(k)
lh − D−1 res

(k)
lh (l = 1, 3, 9, 27, . . .)

The matrix D−1 is the inverse diagonal of the system matrix. On the finest
grid level, the individual components of D are 2/3

∑4
m=1 λm, where λ1, . . . , λ4

denote the thermal conductivities of the four cells surrounding the correspon-
ding node. On coarser grid levels, it is not obvious how to obtain D, since
the elements there in general consist of fine grid cells with different ther-
mal conductivities. For this reason, we shall now consider the computation
of the diagonal elements for the coarser grid levels in some detail. Since we
are interested in the principle only, figure 7 shows a coarse grid cell that is
partitioned into four – and not nine – fine grid cells. The respective ther-
mal conductivities are denoted a, b, c and d. Substituting these quantities for
λ(e) into (7), we obtain the single element stiffness matrices. An intermediate

stiffness matrix belonging to the coarse level is now computed by compiling
the four element stiffness matrices into a 9-by-9 matrix B (according to the
fine grid node numbering) and multiplying this one with the restriction and
interpolation operator respectively:

A(coarse) = RBI, (8)
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Figure 7: Fine and coarse grid node numbering

where

R =











1.0 0.5 0.0 0.5 0.25 0.0 0.0 0.0 0.0
0.0 0.5 1.0 0.0 0.25 0.5 0.0 0.0 0.0
0.0 0.0 0.0 0.5 0.25 0.0 1.0 0.5 0.0
0.0 0.0 0.0 0.0 0.25 0.5 0.0 0.5 1.0











and I = RT . The motivation for (8) is provided by multigrid theory (cf. the
excellent introductory textbook [Briggs 87]). Now that we have obtained the
4-by-4 matrix A(coarse), we are able to proceed to the next coarser grid level,
this time taking A(coarse) instead of (7) as a starting-point. This procedure
is repeated until we have reached the coarsest grid level. Afterwards, all the
diagonal elements required in the correction steps are known. Note that it is
sufficient to determine them once and for all during an initial run.

3 Results

Computations were carried out for three different geometries. They are de-
picted in figure 8. As thermal conductivities we took λair = 0.025 W

mK
and

λbrick = 0.61/0.43 W
mK

. The room temperature was chosen to be constant at
20 degrees centigrade for all calculations, whereas the outside temperature
altered in steps of 5 from +5 to +15.
We are interested in the overall heat transfer rate through the blocks:

Q̇ = −
∫ x2

x1

λ
∂T

∂y
(ξ, y1) dξ (9)
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Figure 8: The ceramic blocks 1NF, 2NF and 4NF (from left to right)

Because T is a steady-state temperature distribution, it doesn’t make any
difference at which y-position we integrate, i.e. instead of y1 we could also
take y2 for evaluation (cf. figure 1). The effective thermal conductivity of a
block is computed by

λeff = Q̇
y2 − y1

To − Ti

.

It turned out that the computations deliver the same values λeff indepen-
dent from the room temperature Ti. This is exactly what the theory of heat
transfer predicts. The table below shows the results:

λeff λbrick = 0.61 λbrick = 0.43
1NF 0.405 0.29
2NF 0.37 0.27
4NF 0.20 0.15
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Figure 9: Isothermal lines colored according to their temperature level
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Figure 10: Detailed view of heat flux vectors. Their length has been standar-
dized. Information about the magnitude is given by color. Notice that the
arrows are perpendicular to the isothermal lines. The grid has been refined
near the material transition.
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Figure 11: Heat flux within block 4NF as color map
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