
Complexity Theoretic Cryptography
JASS 2005

Stefan Neukamm

June 7, 2005

1

Abstract

In this work we present the basic concept of complexity theoretic cryp-
tography. Definitions of one-way functions, collections of one-way functions,
collections of trapdoor functions, hard-core predicates will be discussed and
we give a brief introduction to complexity theory.

2

1 Introduction - The two approaches to

cryptography

Traditionally, cryptography has been associated with the problem of provid-
ing secret communication over insecure media. The setting of this problem
consists of two parties communicating through a channel which is possibly
tapped by an adversary. To keep the ’wiretapper’ as ignorant as possible
regarding the contents of the exchanged information, the parties will use a
protocol, the encryption scheme, that allows them to communicate secretly.

The most important task of cryptography is designing and analysing
encryption schemes. A preliminary task is to give the intuitive terms ’secu-
rity’ and ’adversary’ proper mathematical definitions. Two approaches to
defining security are known.

The classical approach by Shannon in 1949 is information theoretic. It
is concerned with the information about the plaintext which is present in
the ciphertext. Loosely spoken, an encryption scheme is secure if there is
no information about the plaintext present in the ciphertext. In his theory
Shannon showed that - given an adversary, who is assumed to have unlim-
ited computational resources - secure encryption systems can exist only if
the secret key in use is at least as large as the the information to be ever
exchanged using the encryption system.

The modern approach, followed in this paper, is based on computational
complexity. It abandons the assumption of an adversary, supplied with
unlimited computational resources and assumes that the adversary’s com-
putation is bounded in some reasonable way. In this setting the important
question is not if there is plaintext information present in the ciphertext, but
rather if this information can be efficiently extracted. In the complexity-
theoretic approach security is based on a gap between efficient algorithms
guaranteed for the legitimate users versus the computational infeasibility of
retrieving information for an adversary.

Designing such systems requires the existence of computational primi-
tives with certain kinds of computational hardness properties. The most
basic primitive is a one-way function, which loosely spoken is a function,
that is easy to compute but hard to invert.

This paper will discuss the concept of one-way and trapdoor functions,
following the description in [GB01] and [Gol01]. The required background
on computational complexity will be briefly introduced. We will discuss
necessary assumptions, which have to be made for the existence of one-
way functions and for proving the one-wayness of common candidates, like
RSA or discrete logarithm. Finally the concept of hard-core predicates will
be introduced and we will construct a generic hard core predicate for an
arbitrary one-way function.

3

2 Complexity theory

2.1 Basic definitions

Definition 2.1 (Algorithm). An (deterministic) algorithm A is a well-
defined computational procedure that takes a variable input x and halts
with an output, denoted by A(x).

Notation 2.2. The size or length of an input or output, denoted by | · | is
the total number of bits needed for its ordinary binary notation.

Remark 2.3.

• The term ’well-defined computational procedure’ can be formalized by
using formal computational models like Turing machines or boolean
circuits.

• The number of bits in the binary representation of a positive integer
is |n| = 1 + ⌊log2 n⌋.

Definition 2.4 (Running time). For an algorithm A and an arbitrary input
x we define the running time

TimeA(x)

by the number of primitive operations or ’steps’ executed. For an algorithm
A and an input length n ∈ N we define the worst case running time

timeA(n) := max{TimeA(n) : |x| = n}

as the maximum running time of A over all inputs with length n.

Normally one is interested in the worst case running time of an algorithm
for large input. A useful notation to describe the asymptotic running time
is the O-notation:

Definition 2.5. If f is a non-negative function and A an algorithm, we
write

timeA(n) = O(f(n)) ⇔ ∃c > 0, ∃n0 ∈ N : ∀n > n0 : timeA(n) ≤ cf(n).

That means the worst case running time grow no faster asymptotically than
f to within a constant multiple.

Definition 2.6 (Polynomial time algorithm). An algorithm A is called
polynomial time algorithm (PT A), if there exists an polynomial p such
that

timeA(n) ≤ p(n) ∀n ∈ N

4

Remark 2.7. Clearly an algorithm A runs in polynomial time iff

timeA(n) = O(nk)

for a positive constant k.

Definition 2.8 (Probabilistic algorithm). A probabilistic or randomized al-
gorithm A is an algorithm which makes random decisions at certain points
in its execution. Clearly the output of A(x) must be interpreted as a ran-
dom variable, where the probability is token over all internal random de-
cisions (sometimes called ’internal coin tosses’) made during the execution.
Pr [A(x) = y] is the probability of y being the output of A on input x. If
the worst case running time of A can be bounded by a polynomial, then A

is called a probabilistic polynomial time algorithm PPT A.

Example 2.9. For illustration, let us compare the running time of three
algorithms, deciding if an integer is prime or composite:

1. Sieve of Eratosthenes: This algorithm tests primality by trial division.
Clearly if an integer n is not dividable by 2, 3, ..., ⌈√n⌉ then n is prime.
For verifying primality approximately

√
n divisions have to be done.

Expressed in the length of the input n we get

timeEras(n) = O(20.5|n|).

That means, Eratosthenes’ sieve runs in exponential time.

2. Agrawal-Kayal-Saxena AKS algorithm [AKS02] is the only known de-
terministic polynomial time algorithm and runs assymptotically in
O(|n|11.913).

3. Miller-Rabin Primality Test is a randomized algorithm, based on Fer-
mats little Theorem and quadratic residues. It runs in O(k|n|2) with
an error less than 4−k.

Table 2.1 shows the asymptotic behaviour of the three introduced
primality tests. Clearly only the Miller-Rabin primality test is fast
enough for real computa-
tions. It is used to produce
so called ’industrial-grade
primes’. The Miller-Rabin
test recognizes every prime,
but with an error less than

n 20.5|n| |n|12 k|n|2; k := 20

10 Bit 32 1012 2 · 103

100 Bit 1015 1024 2 · 105

1000 Bit 3 · 10149 1036 2 · 107

Table 1: Asymptotic behaviour

10−12 for k := 20 the test certifies composite integers to be prime.
Although AKS is not of practical use, because of the big exponent in its
asymptotic behaviour, it is the only known deterministic polynomial time
primality test and so from great theoretical interest.

5

2.2 Complexity classes

A main goal of the complexity theory is to classify problems by measuring
their computational ’difficulty’. There are different ways to characterize the
difficulty. Here we will introduce the most common one, the time complex-
ity. For simplicity the complexity theory restricts its attention to very easy
problems, the decision problems, which compute functions with value 0 or
1. This is not to too restrictive in practise, as all the problems that will be
encountered here can be reduced to a decision problem of the corresponding
complexity class.

Definition 2.10 (Decision problem). An algorithm A computes the deci-
sion problem given by a set L if

A(x) = χL(x) :=

{

1 x ∈ L

0 x 6∈ L

Definition 2.11 (P-class). The complexity class P is the class of all decision
problems which are decidable by a PT algorithm.

Example 2.12 (Prime). The decision problem given by

Prime := {p : p ∈ N, p is prime}

lies in P, since the AKS algorithm works in polynomial time.

Definition 2.13 (NP-class). The complexity class NP is the class of all
decision problems L for which there exists a PT A, such that

• for all inputs x ∈ L, there exists a witness y with length bounded by
a polynomial p(|x|), such that A(x, y) = χL(x) = 1 .

Example 2.14.

• P ⊂ NP

• For f : {0, 1}∗ → {0, 1}∗ define:
Inversef := {(y, 1n) : ∃x ∈ {0, 1}n s.t. f(x) = y}.
If f is computable in polynomial time, then Inversef ∈ NP :
Let (y, 1n) ∈ Inversef , then

– ∃x ∈ {0, 1}n s.t. f(x) = y

– |(y, 1n)| = n + |y| ≥ |x|. (Length of x is polynomially bounded.)

– Since f(x) = y, we can verify the membership of (y, 1n) ∈ Inversef

in timef (n).

⇒ Inversef ∈ NP

6

Now we like to introduce the randomized complexity class BPP. Let L
be a set and A a randomized algorithm for the decision problem given by L.
As mentioned in 2.8 for every input x the output A(x) is a random variable.
Hence, we will measure the complexity of L by the expected running time
and the ’success’ probability of A computing χL:

Definition 2.15 (BPP-class). The complexity class BPP is the class of
all decision problems L for which there exist a PPT A, which satisfies

∀x ∈ L : Pr [A(x) = 1] ≥ 2

3

∀x 6∈ L : Pr [A(x) = 0] ≥ 2

3
,

The important feature of the problems in BPP is the fact, that the suc-
cess probability can be bounded away in polynomial time. Hence, the con-
stant 2

3 can be substituted by any constant greater than 1
2 without changing

the definition. More generally BPP can be characterized by the following
lemma.

Lemma 2.16. Let L be a decision problem, than the following definitions
are equivalent

(i) L ∈ BPP

(ii) ∃p positive polynomial, ∃PPT A such that

∀x : Pr [A(x) = χL(x)] ≥ 1

2
+

1

p(|x|)

(iii) ∀p positive polynomial, ∃PPT A such that

∀x : Pr [A(x) = χL(x)] ≥ 1 − 2−p(|x|)

Proof only for (2 ⇒ 1). Let A be an algorithm and p a polynomial accord-
ing to (ii). For k ∈ N we construct an algorithm Mk, which involves algo-
rithm A k-times and then rules by majority, namely

Mk(x) :=

{

1 if 1
k

∑k
i=1 A(x) ≥ 1

2

0 else

Since A runs in polynomial time and k can be bounded by a polynomial in
the length of x, the constructed algorithm Mk will run in polynomial time.
Let’s observe the success probability of Mk.
Let x ∈ L and define c > 0 by the equation Pr [A(x) = 1] = 1

2 + c.

7

Clearly p(|x|) ≥ 1/c holds.
Further we define X1, ..., Xk := A(x) and Sk := 1

k

∑k
i=1 Xi. X1, ..., Xk are

independent Bernoulli random variables with expectation E(Xi) = 1
2 +c and

variance σ2.
Hence, we get E(Sk) = 1

k

∑k
i=1 E(Xi) = 1

2 + c and Var(Sk) = 1
k
σ2.

Since x ∈ L, it holds that

Pr [M(x) = 1 |x ∈ L] = Pr

[

Sk ≥ 1

2

]

= Pr

[

Sk − (
1

2
+ c) ≥ −c

]

≥ Pr [|Sk − E(Sk)| ≥ −c] = 1 − Pr [|Sk − E(Sk)| < c]

≥ 1 − Var(Sk)

c
Chebyshov’s Inequality

= 1 − σ2

kc
. (1)

With k(|x|) := 3σ2p(|x|) + 1 algorithm Mk(|x|) runs in polynomial time and

Pr
[
Mk(|x|)(x) = 1 |x ∈ L

]
≥ 2

3

holds for all x ∈ L. With a similar consideration for x 6∈ L we get an PPT

algorithm satisfying (i).
The proof for (3) ⇒ (1) uses the Chernoff bound instead of Chebyshov’s
Inequality.

Remark 2.17. We conclude that the complexity class BPP is the class of
problems, which can be recognized by a PPT algorithm with a negligible
error probability.

Notation 2.18. We will call a function ν : N → N negligible, if for every
polynomial p there exists N ∈ N, such that for all n > N

ν(n) <
1

p(n)

holds.

8

3 One-way function

3.1 Motivation

The central idea of complexity theoretic cryptography is to implement se-
curity by using the gap between efficiently computable problems and the
computational infeasibility of certain tasks.

Consider the follwing setting: Alice encrypts a plaintext message x ∈
{0, 1}n by computing the ciphertext y, which is the image of x under the
encryption function f . The adversary Eve, who knows only the ciphertext
and the encryption function, tries to retrieve the plaintext message, e.g. Eve
tries to find an inverse x̃ ∈ {0, 1}n with f(x̃) = y.

Clearly, if Eve just guess x̃, the probability to retrieve the original plain-
text will be insignificant. If we assume f to be 1-1, the resulting probability
is

Pr [f(Un) = f(x)] =
1

2n
,

where Un denotes a random variable uniformly distributed over {0, 1}n.
On the other side, if Eve tests every possible plaintext, surely Eve will

find the original one. But Eve will have to apply 2n times the function f
to different plaintext candidates. Hence, this approach is very inefficient
and almost impossible for large n, since Eves computational resources are
bounded.

The obvious questions is, if there exists an algorithm in the ’middle’,
namely an algorithm finding an inverse x̃

• with significantly high success probability

• in polynomial running time.

If inverting f is hard enough in the sense, that such algorithm does not
exist, f will be called one-way.

Hence, the one-wayness of the encryption function is a necessary pre-
condition for security. The task of this chapter is to define a formal frame,
which abstracts this concept and enables us to analyse the resulting security
in a precise way.

3.2 Definition

Definition 3.1 (One-way function). A function f : {0, 1}∗ → {0, 1}∗ is
called one-way if the following two conditions hold

(a) easy to compute. ∃PT A such that ∀x ∈ {0, 1}∗ : PT A(x) = f(x)

(b) hard to invert. For every PPT A′, every polynomial p and all suffi-
ciently large n ∈ N

Pr
[
A′(f(Un), 1n) ∈ f−1(f(Un))

]
<

1

p(n)

9

holds. (Un denotes a random variable uniformly distributed over {0, 1}n.)

Remark 3.2 (The model of adversary). In the setting, that is induced by def-
inition 3.1, the model of adversary is called passive adversary. It is assumed,
that the adversary is only able to read the ciphertext f(x), generate encryp-
tions of any message on his own (applying f on arbitrary x ∈ {0, 1}∗)and
perform probabilistic polynomial time computation.

A successful attack is interpreted as the event, that a PPT A′ outputs a
preimage of the cipher f(x). Clearly, if f is 1-1 the preimage will be unique
and equal to the original plaintext. The adversary algorithm A′ takes as
input the cipher f(x) and the security parameter 1n, which corresponds
to the binary length of x. Since, the encryption function is computable in
polynomial time, the size of the ciphertext |f(x)| is bounded by a polynomial
in n = |x|.

The guarantee of one-wayness is probabilistic. The adversary is not
unable to find the original plaintext, but has very low probability to do so.
Asymptotically, every adversary algorithm will have only negligible better
success probability than simple guessing.

3.3 Useful length convention

For further discussions it is useful to introduce the following convention
regarding the length of the preimage and image of one-way functions.

In definition 3.1 the domain of f is the set of all binary words (with finite
length). Clearly, we can generalize the definition:

Definition 3.3 (One-way on lengths in I). Let I ⊂ N be a polynomial-time
enumerable set, i.e. ∀n ∈ N : sI(n) := min{i ∈ I : i > n} is polynomial-
time computable and f is defined over lengths in I, i.e. the domain of f
is

⋃

n∈I{0, 1}n. f is called one-way on lengths in I if f is computable in
polynomial time and f is hard to invert over n’s in I.

Given such a function f , we can construct a function g : {0, 1}∗ → {0, 1}∗
by setting g(x) := f(x′) with x′ is the longest prefix of x with length in I.

Lemma 3.4. Let I be a polynomial-time enumerable set and f one-way on
lengths in I, then g (constructed above) is one-way according to definition
3.1.

Proof sketch. Assume there exists an probabilistic polynomial time algo-
rithm B′ which inverts g with not negligible probability and conclude that
there exists an PPT A′ using B′ and inverting f with not negligible prob-
ability.

Definition 3.5 (Length preserving). A function f : {0, 1}∗ → {0, 1}∗ is
called length preserving if

∀x ∈ {0, 1}∗ : |f(x)| = |x|

10

Given an arbitrary one-way function f we can construct a length-preserving
function g, which is one-way:

Lemma 3.6. If f is a one-way function, then there exists a length preserving
one-way function g.

3.4 Candidates for one-way functions

Since one-way functions can be computed in polynomial time, the breaking
task can be performed by a non-deterministic polynomial time machine (cp.
2.14). Hence, a necessary condition for the existence of one-way functions
is

P 6= NP.

Further, if NP is contained in BPP, then also the breaking task can be
performed by a probabilistic polynomial time algorithm with not negligible
probability. Hence, a more strong necessary condition for the existence of
one-way functions is

NP * BPP.

The following functions are conjectured to be one-way, since no efficient
inverting algorithms are known.

Example 3.7 (Factoring). The best algorithms known for factoring an
integer N ∈ N run in time

2O(
√

log P log log P),

where P is the second biggest prime factor in N . Hence we can conjecture
that the function fmult, which partitions its input into two parts and returns
the integer resulting by multiplying these parts, is one-way.

Assuming the intractability of factoring and using the density of primes
one can construct a one-way function based on fmult.

Other popular functions like RSA or Rabin-Square are related to in-
teger factorization.

Example 3.8 (Discrete logarithm). Let p be a prime and g a generator
of the multiplicative group Z

∗
p. The function Expg,p : x → (gx mod p) is

assumed to be one-way. The problem to find an inverse of Expg,p is called
the discrete logarithm problem DLP and the fastest randomized algorithms
known today work in subexponential running time.

An interesting problem connected with DLP is to find an algorithm,
which will generate a prime p and a generator g of Z

∗
p. A deterministic

polynomial time algorithm is not known today, only randomized algorithms
with expected polynomial running time are known.

The popular ElGamal cryptosystem is closely related to the DLP.

11

4 Collections of one-way functions

4.1 Motivation

In this section we introduce the concept of one-way collections, which is
more suitable to examine in practice.

In definition 3.1 the domain of the one-way function f was a infinite
set. In this section we avoid this by talking about a infinite collection of
functions, each defined over some finite domain.

As a motivating discussion, let’s mentally install a cryptosystem by using
EXPg,p definied in 3.8:

(a) At first we will select the security level by defining the security para-
meter 1n.

(b) According to 1n we will compute (g, p), where p is prime with length
n and g a generator of Z∗

p.

(c) Clearly, EXPg,p is 1-1 if we reduce the domain to Dp := {1, ..., p− 1}.
Hence, we split up the plaintext message according to Dp and maintain
x ∈ Dp.

(d) Finally we encode x by applying EXPg,p.

Since difficulty to invert EXPg,p depends on the selection of p (e.g. if
p − 1 has only very small factors, EXPg,p can be inverted efficiently), the
analysis of the security in this setting must consider not only the hard-
to-invert property of EXPg,p, but also the probability distribution of the
algorithm computing (p, g) in (b) and the sampling algorithm in (c).

This obeservation leads to the following definition.

4.2 Definition

Definition 4.1 (Collection of one-way functions). Let I be a set of indices
and Di ⊂ {0, 1}∗ finite ∀i ∈ I. A collection of one-way functions is a set

F = {fi : Di → {0, 1}∗}i∈I

satisfying the following two conditions

1 There exists three PPT SI, SD, A, such that

– SI on input 1n outputs an i ∈ {0, 1}n ∩ I

– SD on input i ∈ I outputs an x ∈ Di

– A on input i ∈ I and x ∈ Di outputs fi(x)

2 For every PPT A′, every polynomial p(·) and sufficiently large n

Pr
[
A′(fIn

(Xn), In) ∈ f−1
In

(fIn
(Xn))

]
< 1

p(n)

12

holds.

In, Xn are random variables describing the output distribution of SI, SD.

Lemma 4.2. One-way functions exist if and only if collections of one-way
functions exist.

For a proof we refer to [GB01].

Remark 4.3. Under the strong discrete logarithm assumption (i.e. ∀PPT A

and ∀k sufficiently large: Pr [A(g, p, y) = x such that gx mod p = y] is neg-
ligible) there exists a collection of one-way functions based on the DLP.

4.3 Collection of trapdoor functions

In this section we will concern about the proceeding of decryption. As the
encryption, the decryption of ciphertext should be computable in polynomial
time.

Because of the one-wayness of the encryption function, a decryption algo-
rithm needs additional information to compute the plaintext in polynomial-
time. This additional information is also called the trapdoor and allows the
efficiently inverting of f .

In the concept of one-way collections, we claim that for every fi ∈ F ,
F collection of one-way functions, there exist a trapdoor ti, such that an
algorithm on input (fi(x), ti) finds x in polynomial time.

Hence, the formal definition is

Definition 4.4 (Collection of trapdoor functions). Let I be a set of indices
and Di ⊂ {0, 1}∗ finite ∀i ∈ I. A collection of trapdoor functions is a set

F = {fi : Di → {0, 1}∗}i∈I

satisfying the following two conditions

1 There exists four PPT SI, SD, A, such that

– SI on input 1n outputs an i ∈ {0, 1}n∩ I and the trapdoor ti with
|ti| < p(n) for a polynomial p(·).

– SD on input i ∈ I outputs an x ∈ Di

– A1 on input i ∈ I and x ∈ Di outputs fi(x)

– A2 such that A2(i, ti, fi(x)) = x for all i ∈ I, x ∈ Di.

2 For every PPT A′, every polynomial p(·) and sufficiently large n

Pr
[
A′(fIn

(Xn), In) ∈ f−1
In

(fIn
(Xn))

]
< 1

p(n)

holds.

In, Xn are random variables describing the output distribution of SI, SD.

13

Remark 4.5. Possible examples for trapdoor collections like RSA, Square-

Rabin can be found in [GB01].

Remark 4.6. The implementation of a public key cryptosystem can be in-
spired by the following idea. Let F := {fi}i∈I be a collection of trapdoor
functions. After randomly choosen an i ∈ I according to the security pa-
rameter, Alice computes the trapdoor information ti and keeps it secret as
the private key. Then Alice distributes the function fi as a public key. Bob
can send a message x to Alice by using the encryption funtion fi. For every
adversary Eve, not knowing the trapdoor ti, it is infeasible to compute the
original plaintext.

Detailed information about the relation between one-way functions (col-
lections) and public key cryptosystems, public key distribution systems can
be found in [DH76].

14

5 Hard-core predicate

5.1 Motivation

In 3.2 we observed that in the context of one-wayness an adversary attack is
succesful if A′ finds an x̃ with f(x̃) = f(x). The situation that an adversary
algorithm could find partial information of x, e.g. the least significant bit,
is not considered.

As an example let’s observe the one-way function candidate EXP defined
in 3.8. We show that it is easy to compute the least significant bit of x given
only EXP(x):

Lemma 5.1. Let p be a prime and g generator of Z
∗
n. Let x ∈ Z

∗
n and

define y := EXPg,p(x). Then the least significant bit of x can be (efficiently)
computed by

least significant Bit of x :=

{

1 if y
p−1

2 ≡ 1 mod p

0 else

Proof. For p prime we define the map

f : Z∗
p → Z

∗
p, f(x) := x2 mod p

and the set of the quadratic residues modulo p

QR(p) := f(Z∗
p) = {y ∈ Z

∗
p : ∃x : y ≡ x2 mod p}

Let y ∈ QR(p). Let w, x ∈ Z
∗
p with y ≡ x2 mod p ≡ x2 mod p. Then it holds

that

x2 − w2 mod p ≡ 0 mod p

⇒p|(x − w)(x + w)

⇒ p|(x − w)
︸ ︷︷ ︸

⇒w≡x mod p

or p|(x + w)
︸ ︷︷ ︸

⇒w≡−x mod p

⇒|f−1(y)| ≤ 2

Clearly, y = f(x) = f(−x) and since p is not even, xmod p 6≡ −xmod p
holds. Hence, |f−1(y)| = 2 ∀y ∈ QR(p) and so QR(p) must have the
cardinality p−1

2 .
Let g be a generator of Z∗

p, then gx is a quadratic residue if and only if
x is even. On the other side

a ∈ QR(p) ⇔ a
p−1

2 ≡ 1 mod p,

since with Euler’s criterion it holds, that

a ∈ QR(p) ⇒ ∃α : a = g2α ⇒ a
p−1

2 = (gα)p−1 ≡ 1 mod p (2)

15

and if gβ ≡ 1 mod p, we conclude that β must be even.
Since the least significant bit of x is equal to 0 if and only if x is even,

we can compute it by testing (2).

Example 5.1 shows that a one-way function does not necessarily hide
everything about x. But obviously there is at least one bit of x which is
hard to retrieve from f(x).

Indeed in the case of the DLP, one can show that ’guessing’ the most
significant bit of x is hard in the sense, that if someone can compute the
most significant bit of x with probability not negligible better than 1/2,
then there exists a PPT algorithm that solves the DLP with not negligible
success probability. (Detailed information can be found in [BM84].)

In general we will call a predicate b a hard-core of f if guessing b(x) from
f(x) is as hard as inverting f .

5.2 Definition

Definition 5.2. A hard-core predicate of a function f : {0, 1}∗ → {0, 1}∗ is
a boolean predicate b : {0, 1}∗ → {0, 1}, such that

(a) ∃PPT A : ∀x : A(x) = b(x)

(b) ∀PPT G,∀p(·) polynomial and all sufficiently large n

Pr [G(f(Un)) = b(Un)] <
1

2
+

1

p(n)

holds.

5.3 A generic hard-core predicate

In this section we will construct a hard-core predicate for one-way functions
of special form and we will show how an arbitrary one-way function can
be transformed into the required form without loss in either ’security’ nor
’efficiency’.

Theorem 5.3 (Generic hard-core predicate). Let f be an arbitrary length-
preserving one-way function. Define g :

⋃

n∈N{0, 1}2n → {0, 1}∗ by

g(x, r) := (f(x), r) with |r| = |x|.

Let b(r, x) denote the inner product modulo 2, namely

b(x, r) =
n∑

i=1

(xiri mod2),

where n := |x| and ri, xi denotes the ith Bit of x respectively r.
Then b is a hard-core predicate of the function g.

16

Remark 5.4. In other words, b computes the exclusive-or of a subset of the
bits of x. The subset is induced by the r. Hence, the theorem states that if
f is a one-way function it is infeasible to guess this exclusive-or when given
f(x) and the subset itself.

Proof. The proof works by contradiction and uses a ’reducibility argument’:
We assume that b(x, r) can be predicted efficiently by an algorithm G with
probability not negligible better than 1

2 and we will conclude the existence
of an efficient algorithm inverting f . This contradicts the hypothesis that f
is a one-way function.

Let’s assume b is not a hard-core predicate. We conclude:

∃PPT G

∃p′ polynomial

∃I ′ ⊂ N infinite

such that

Pr [G(g(Un)) = b(Un)] >
1

2
+

1

p′(n)
∀n ∈ I ′

According to the structure of b we can transfer this statement to the equiv-
alent one:

∃PPT G

∃p polynomial (3)

∃I ⊂ N infinite

such that

Pr [G(g(Xn, Rn)) = b(Xn, Rn)] >
1

2
+

1

p(n)
∀n ∈ I

We define the advantage ǫ(n) of G in predicting b(x, r) from f(x) and r
by

ǫ(n) := Pr [G(f(X − n), Rn) = b(Xn, Rn)] − 1

2
.

Clearly, ǫ(n) > 1
p(n) ∀n ∈ I. In the sequel we restrict our attention only to

n ∈ I.
As a first observation, we conclude that there is subset Sn of words of

length n, which has at least the cardinality ǫ(n)
2 2n and for which G predicts

b with an advantage of at least ǫ(n)
2 . The following claim can be proved by

applying the Markov Inequality on s(Xn).

Claim. There exists a set Sn ⊆ {0, 1}n, such that

• |Sn| ≥ ǫ(n)
2 2n

• s(x) := Pr [G(f(x), Rn) = b(x, Rn)] ≥ 1
2 + ǫ(n)

2 ∀x ∈ Sn.

17

In the sequel we restrict our attention to x’s in Sn. For those x’s we will
construct an efficient algorithm that on every input y with f(x) = y, x ∈ Sn

will find x with high probability. Since, Pr [Xn ∈ Sn] ≥ ǫ(n)
2 contradiction

to the one-wayness of f will follow.

Idea 1 As a mental experiment we suppose G to be such good, that

s(x) >
3

4
+

1

2p(n)
∀x ∈ Sn. (4)

Under such assumption, we can easily construct an algorithm A finding an
preimage x.

First, we introduce the notation

x ⊕ r := w with wi := (xi + ri)mod 2.

If ei ⊂ {0, 1}n denotes the word, equal to zero except the ith bit= 1, then
clearly

b(x, ei) =xi ∀x (5)

and

b(x, r) ⊕ b(x, r ⊕ ei) =b(x, r ⊕ r ⊕ ei) = b(x, ei)

=xi ∀x, r. (6)

holds.
The probability of the event H, that

H : G(f(x), r) = b(x, r) and G(f(x), r ⊕ ei) = b(x, r ⊕ ei)

holds, is

Pr [H|x ∈ Sn] > 1 − 1

poly(|x|) .

In this case we can compute the ith bit of x by using (6):

G(f(x), r) ⊕ G(f(x), r ⊕ ei) = b(x, r) ⊕ b(x, r ⊕ ei) = xi.

Since, Pr [H] is not negligible better than 1
2 , we can retrieve xi by repeating

the above procedure polynomially often and ruling by majority.
The problem of idea 1 is that the assumption made in (4) cannot be

weakened. An important point is, that Pr [H] is not negligible better than
1
2 . We obtain this probability by using G twice to get a ’guess’ of b(x, r)
and b(x, r⊕ei); consequently Pr [H] is the squared success probability of G.
In a realistic setting the advantage ǫ(n) of G will be significantly smaller
than 1

4 , so that Pr [H] ≤ 1
2 . That means we cannot improve the result by

repeating and ruling by majority.

18

Idea 2 The second idea is to construct a sequence of {rJ}J∈M and only
using G once for each rJ to get a prediction of b(x, rJ ⊕ ei). We will con-
struct {rJ}J∈M in such a way, that on one side the sequence of the rJ ’s is
’sufficiently random’ and on the other side ’structured’, so that we are able
to make sufficiently good predictions of the predicates b(x, rJ).

The algorithm The following algorithm, denoted A, inverts f with non
negligible probability. Let y be the input of A, then

1. A sets n := |y|, l := ⌈log2(2n p(n)2 + 1⌉, where p(·) is defined in (3).

2. A uniformly and independently selects s1, ..., sl ∈ {0, 1}n

3. A uniformly and independently selects σ1, ..., σl ∈ {0, 1}
4. For every non-empty set J ⊂ {1, 2, ..., l} A computes

rJ := ⊕j∈Jsj and

ρJ := ⊕j∈Jσj

5. For every i ∈ {1, ..., n} and every non-empty set J ⊂ {1, ..., l}, A

computes

zJ
i := ρJ ⊕ G(y, rJ ⊕ ei)

and outputs the majority of zJ
i as the ith bit of x.

Analysis of the success probability of A For the analysis of the
success probability, we define the event F by

F : ∀k = 1, ..., l : σk = b(x, sk)

and the event E by

E : for the majority of J ⊂ {0, ..., l} : G(f(x), rJ ⊕ ei) = b(x, rJ ⊕ ei).

Clearly, if F holds, then

∀J ⊂ {1, ..., l} non-empty : ρJ = b(x, rJ).

Hence, F can be interpreted as the event that ’our guess’ ρJ is always correct.
If F and E holds, than for a majority of the non-empty subsets J ⊂

{1, ..., l} it holds that

ρJ ⊕ G(f(x), rJ ⊕ ei) = b(x, rJ) ⊕ b(x, rJ ⊕ ei) = xi.

In this case A outputs a correct ith bit.
Independently from F we observe the probability of E :

19

Claim. For every x ∈ Sn and every 1 ≤ i ≤ n,

Pr

[
∣
∣{J : b(x, rJ) ⊕ G(f(x), rJ ⊕ ei) = xi}

∣
∣ >

1

2
(2l − 1)

]

> 1 − 1

2n

Proof sketch. For every J define a 0-1 random variable

XJ :=

{

1 if b(x, rJ) ⊕ G(f(x), rJ ⊕ ei) = xi

0 else
.

Since the rJ are uniformly distributed over {0, 1}n it follows that

Pr [XJ = 1] = s(x) ≥ 1

2
+

1

2p(n)
.

Further the XJ are pairwise independent. Hence, with Chebyschev’s In-
equality we get

Pr

[
∑

J

XJ ≤ 1

2
(2l − 1)

]

<
1

2n
.

The claim follows.

Now, we are able to find a lower bound for the success probability of
algorithm A. If the events F and E hold and x ∈ Sn, then A surely is
successful. Hence, we conclude

Pr [A(y) = x such that f(x) = y] ≥ Pr [E ∧ F ∧ Xn ∈ Sn]

= Pr [E]Pr [F]Pr [Xn ∈ Sn]

≥ 1

2
· 2−l · |Sn|

2n

=
1

8np(n)3 + p(n)

The success probability is not negligible! Since, A invokes G for 2n · p(n)2

times, A is a probabilistic polynomial time algorithm, that inverts f with
not negligible success probability. This is a contradiction to the hypothesis
that f is one-way.

We conclude, that the ’guessing’ algorithm G does not exist. Hence, b
is a hard-core predicate of g.

20

References

[GB01] Shafi Goldwasser and Mihir Bellare, Lecture notes on cryptography,
2001

[Gol01] Oded Goldreich, Foundations of cryptography: Basic applications,
Cambridge University Press, 2004.

[DH76] W. Diffie and M.E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory (1976)

[BM84] M. Blum and S. Micali, How to generate cryptographically strong
sequences of pseudo-random bits. SIAM J. Computing, 13(4):850-863, No-
vember 1984

[AKS02] M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P. IIT Kanpur,
www.cse.iitk.ac.in/news/primality.html

21

