
One-Way Encryption and Message

Authentication

Johannes Mittmann

May 28, 2005

Abstract

In modern society the protection of the authenticity of information
has become as important as the protection of its confidentiality. This
means that there is a need for data origin authentication as well as for
verification of data integrity. Hash functions are versatile cryptographic
building blocks that are used in this context, but also in conjunction with
digital signature schemes and many other applications such as password
protection or pseudo-random numbers generation.

A hash function is an algorithm that takes inputs of arbitrary length
and returns a short string of bits, the message digest. However, for cryp-
tographic hash functions to be secure, additional properties are required.
For instance, it should be hard to find two distinct messages that hash
to the same value. Hash functions that depend on a secret key are called
message authentication codes (MACs).

This paper gives definitions of the basic terms of cryptographic hash
functions, following the description in [Sti02]. First, we discuss generic
attacks that can be applied to arbitrary hash functions and give a com-
parison of security criteria. Second, we describe design principles of iter-
ated hash functions in general, and the Secure Hash Algorithm (SHA-1) in
particular. Finally we introduce message authentication codes and show
their construction from other cryptographic primitives.

Contents

1 Introduction 2

2 Security of Hash Functions 2
2.1 Generic Attacks in the Random Oracle Model 3
2.2 Comparison of Security Criteria 5

3 Iterated Hash Functions 6
3.1 The Merkle-Damg̊ard Construction 7
3.2 The Secure Hash Algorithm (SHA-1) 8

4 Message Authentication Codes (MACs) 10
4.1 Nested MACs, HMAC and CBC-MAC 10
4.2 Unconditionally Secure MACs . 11

1

1 Introduction

An illustrative example of a hash function is a function

h : {0, 1}∗ → {0, 1}m

that maps a bitstring x of arbitrary length to a string of fixed length, the message
digest. A cryptographic hash function can provide assurance of data integrity.
This can be done by computing y = h(x) and storing y in a secure place. If
we want to check later wether the data has been altered, we can recompute the
hash value and compare it with our stored one. If our data has changed, we
hope that our message digest has changed, too.

A generalized definition for a whole set of hash functions is the following:

Definition 1. A hash family is a four-tuple (X ,Y,K,H), where

1. X is a set of possible messages,

2. Y is a finite set of possible messages digests or authentication tags,

3. K, the keyspace, is a finite set of possible keys,

4. for each K ∈ K, there is a hash function hK ∈ H, hK : X → Y.

The set X can be finite or infinite. If it is finite, a hash function is called a
compression function.

A pair (x, y) ∈ X × Y is said to be valid under the key K if hK(x) = y.
Let N = |X | and M = |Y|. Then (X ,Y,K,H) is also termed an (N,M)-hash

family. By YX we denote the set of all functions from X to Y.

2 Security of Hash Functions

Let h : X → Y be an unkeyed hash function. It is considered secure, if the
following three problems are hard to solve:

Problem 2. Preimage
Instance: A hash function h : X → Y and an element y ∈ Y.
Find: x ∈ X such that h(x) = y.

A hash function for which Preimage cannot be solved efficiently is said to be
one-way or preimage resistant.

Problem 3. Second Preimage
Instance: A hash function h : X → Y and an element x ∈ X .
Find: x′ ∈ X such that x′ 6= x and h(x′) = h(x).

A hash function for which Second Preimage cannot be solved efficiently is
said to be second preimage resistant.

Problem 4. Collision
Instance: A hash function h : X → Y.
Find: x, x′ ∈ X such that x′ 6= x and h(x′) = h(x).

A hash function for which Collision cannot be solved efficiently is said to be
collision resistant.

In the next two sections we investigate the difficulty of solving these prob-
lems, as well as the relative difficulty of the three problems (see [Sti04]).

2

2.1 Generic Attacks in the Random Oracle Model

Below we discuss generic attacks that can be applied to any hash function.
The random oracle model, as introduced by Bellare and Rogaway in [BR93],

provides a theoretical model of an ”ideal” hash function. In this model, a hash
function h : X → Y is selected uniformly and independently from YX at random.
Further we are only permitted oracle access to the function. These assumptions
are very strong, in fact, a random oracle cannot be implemented in practice.
However, as a consequence we should have the following:

Theorem 5 (independence property). Let h ∈ YX be chosen at random, and
let x1, . . . , x` ∈ X . Suppose that the values yi = h(xi) have been determined for
1 ≥ i ≥ `. Then

Pr [h(x) = y |h(x1) = y1, . . . , h(x`) = y`] =
1
M

for all x ∈ X \ {x1, . . . , x`} and all y ∈ Y.

The attacks we describe are Las Vegas algorithms. These are randomized
algorithms that may fail to give an answer, but if they do return an answer,
then the answer must be correct. By (ε, q)-algorithm we denote a Las Vegas
algorithm with average-case success probability ε, in which at most q oracle
queries are made.

The first algorithm attempts to solve Preimage.

Algorithm 6. FindPreimage(h, y, q)
1: choose X0 ⊆ X , |X0| = q
2: for all x ∈ X0 do
3: if h(x) = y then return x
4: end for
5: return failure

Theorem 7. For any X0 ⊆ X with |X0| = q, the average-case success probability
of Algorithm 6 is

ε = 1−
(

1− 1
M

)q

.

Proof. Let y ∈ Y and X0 = {x1, . . . , xq}. For 1 ≥ i ≥ q, let Ei denote the
event ”h(xi) = y”. From Theorem 5 it follows that the Ei’s are independent
and Pr[Ei] = 1

M . Hence,

Pr [E1 ∨ · · · ∨ Eq] = 1−
(

1− 1
M

)q

.

With a similar algorithm we try to solve Second Preimage.

Algorithm 8. FindSecondPreimage(h, x, q)
1: y ← h(x)
2: choose X0 ⊆ X \ {x}, |X0| = q − 1
3: for all x0 ∈ X0 do
4: if h(x0) = y then return x0

5: end for
6: return failure

3

The analysis of Algorithm 8 is the same as the previous one, except for an
additional application of h.

Theorem 9. For any X0 ⊆ X \ {x} with |X0| = q − 1, the success probability
of Algorithm 8 is

ε = 1−
(

1− 1
M

)q−1

.

The attacks just described are called random (second) preimage attacks. If
the number q of oracle queries is small compared to M we can estimate

1− ε =
(

1− 1
M

)q

=
q∑

i=0

(
q

i

)(
− 1

M

)i

≈ 1− q

M
,

and hence q ≈ εM . So these attacks are (ε,O(M))-algorithms.
Finally, we present an algorithm for Collision.

Algorithm 10. FindCollision(h, q)
1: choose X0 ⊆ X , |X0| = q
2: for all x ∈ X0 do yx ← h(x)
3: if yx = yx′ for some x′ 6= x then return (x, x′)
4: else return failure

The test in line 3 could be implemented by sorting the y′xs, which can be
done in O(q log q).

The analysis of algorithm 10 is analogous to the birthday paradox.

Theorem 11. For any X0 ⊆ X with |X0| = q, the success probability of Algo-
rithm 10 is

ε = 1−
q−1∏
i=1

(
1− i

M

)
.

Proof. Let X0 = {x1, . . . , xq}. For 1 ≤ i ≤ q, let Ei denote the event ”h(xi) 6∈
{h(x1), . . . , h(xi−1)}”. From Theorem 5 it follows by induction that Pr[E1] = 1
and

Pr [Ei |E1 ∧ · · · ∧ Ei−1] =
M − i + 1

M

for 2 ≤ i ≤ q. Hence,

Pr [E1 ∧ · · · ∧ Eq] =
q−1∏
i=1

(
1− i

M

)
.

The attack carried out by this algorithms is called a birthday attack. Using
the estimate

1− ε =
q−1∏
i=1

(
1− i

M

)
≈

q−1∏
i=1

exp
(
− i

M

)
= exp

(
−

q−1∑
i=1

i

M

)

= exp
(
−q(q − 1)

2M

)
≈ exp

(
− q2

2M

)

4

we can approximate the number of oracle queries by

q ≈
√

2M log
1

1− ε
.

So a birthday attack is an (ε,O(
√

M))-algorithm.
In the setting of the standard birthday paradox (ε = 0.5 and M = 365) we

obtain q ≈ 1.17
√

M ≈ 22.3. Hence, the probability that two persons in a group
of 23 people share a birthday is larger than 1/2.

Since a birthday attack can be carried out on any hash function, it imposes
a lower bound on the output size of a secure hash function. At the moment the
minimum acceptable size of a message digest is 128 bits, but 160-bit message
digests or larger are usually recommended (the birthday attack will require more
than 280 hashes in this case).

The algorithms presented in this section were rather trivial. However, in
[Sti04] it is shown that they are optimal in the random oracle model.

2.2 Comparison of Security Criteria

In the last section we have seen that solving Collision is easier than solving
(Second) Preimage. We now investigate wether there exist reductions among
the three problems.

It is easy to see that we can reduce Collision to Second Preimage.

Algorithm 12. CollisionTo2ndPreimage(h)
1: choose x ∈ X uniformly at random
2: if Oracle2ndPreimage(h, x) = x′ and x′ 6= x and h(x′) = h(x) then

return (x, x′)
3: else return failure

If Oracle2ndPreimage is an (ε, q)-algorithm that solves Second Preimage
for a hash function h, then it is clear that CollisionTo2ndPreimage is an
(ε, q + 2)-algorithm that solves Collision for h. As a consequence we obtain
that the property of collision resistance implies the property of second preimage
resistance.

The more interesting question is wether Collision can be reduced to Preimage
as well. Unfortunately, there is no positive answer in general. However, if we
can solve Preimage with probability 1 and if we make fairly weak assumptions
on the relative size of domain and range of the hash function, then we can
solve Collision using Algorithm 13. This means that in this special case collision
resistance implies preimage resistance.

Algorithm 13. CollisionToPreimage(h)
Require: OraclePreimage is (1, q)-algorithm
1: choose x ∈ X uniformly at random
2: y ← h(x)
3: if OraclePreimage(h, y) = x′ and x′ 6= x then return (x, x′)
4: else return failure

Theorem 14. Let h : X → Y be a compression function, where |X | ≥ 2 |Y|.
Suppose OraclePreimage is a (1, q)-algorithm that solves Preimage for h.
Then CollisionToPreimage is a (1/2, q + 1)-algorithm for Collision, for the
fixed compression function h.

5

Proof. The relation defined by

x ∼ x′ :⇐⇒ h(x) = h(x′)

is an equivalence relation on X . Let C := X/∼ = {[x] : x ∈ X} be the set of
equivalence classes. Each equivalence class [x] consists of the inverse image of
an element in Y, so we have |C| = |Y|.

Let x ∈ X be the randomly chosen element in CollisionToPreimage. The
probability that OraclePreimage finds a different preimage that yields a col-
lision is (|[x]|−1)/ |[x]|. Thus the average-case success probability of Algorithm
13 is

Pr[success] =
1
|X |

∑
x∈X

|[x]| − 1
|[x]|

=
1
|X |

∑
C∈C

∑
x∈C

|C| − 1
|C|

=
1
|X |

∑
C∈C

(|C| − 1) =
|X | − |Y|
|X |

≥ |X | − |X | /2
|X |

=
1
2
.

3 Iterated Hash Functions

A hash function must be able to process arbitrary-length input. Since it is not
easy to find such a function rule, iterated hash functions are used in practice.
They break the input up into a series of equal-size blocks and operate on them
in sequence using a compression function.

So let Compress : {0, 1}m+t → {0, 1}m be a compression function (where
t ≥ 1). The construction of the iterated hash function h consists of three steps:

preprocessing: Given an input string x, where |x| ≥ m + t + 1, construct a
string y such that |y| = 0 (mod t). Denote

y = y1 ‖ y2 ‖ · · · ‖ yr,

where |yi| = t for 1 ≤ i ≤ r.
A commonly used preprocessing step is to construct y by appending addi-

tional bits to x using a padding function:

y = x ‖Pad(x).

The preprocessing step must ensure that the mapping x 7→ y(x) is an injection,
otherwise it may be possible to find collisions for h easily. In particular this
means that |y| = rt ≥ |x|.

processing: Let IV be a public initial value (|IV| = m). Then compute the
following:

z0 ← IV
z1 ← Compress(z0 ‖ y1)
z2 ← Compress(z1 ‖ y2)

...
zr ← Compress(zr−1 ‖ yr).

6

optional output transformation: Let g : {0, 1}m → {0, 1}` be a function.
Define h(x) = g(zr). What we obtain is a hash function

h :
∞⋃

i=m+t+1

{0, 1}i → {0, 1}`.

3.1 The Merkle-Damg̊ard Construction

There are two elements in the generic construction described above, which have
an important influence on the security of the resulting hash function: the choice
of the padding rule and the initial value IV. Merkle [Mer90] and Damg̊ard
[Dam90] independently showed that an iterated hash function preserves the de-
sired collision-resistance of the underlying compression function, if the padding
bits contain the binary representation of the input length |x| and if the IV is
fixed. This padding scheme is called MD-strengthening.

Algorithm 15 shows the details of this construction for a block length t ≥ 2.

Algorithm 15. Merkle-Damg̊ard(x)
Require: Compress : {0, 1}m+t → {0, 1}m, t ≥ 2
1: n← |x|
2: k ← dn/(t− 1)e
3: d← n− k(t− 1)
4: for i← 1 to k − 1 do yi ← xi

5: yk ← xk ‖ 0d

6: yk+1 ← the binary representation of d
7: z1 ← 0m+1 ‖ y1

8: g1 ← Compress(z1)
9: for i← 1 to k do

10: zi+1 ← gi ‖ 1 ‖ yi+1

11: gi+1 ← Compress(zi+1)
12: end for
13: return gk+1

In the case t = 1 the input x has to be encoded first. This is done using the
function f defined by

f(0) = 0
f(1) = 01.

Algorithm 16. Merkle-Damg̊ard2(x)
Require: Compress : {0, 1}m+1 → {0, 1}m
1: n← |x|
2: y ← 11 ‖ f(x1) ‖ f(x2) ‖ · · · ‖ f(xn)
3: denote y = y1 ‖ y2 ‖ y2 ‖ · · · ‖ yk, where yi ∈ {0, 1}, 1 ≤ i ≤ k
4: g1 ← Compress(0m ‖ y1)
5: for i← 1 to k − 1 do gi+1 ← Compress(gi ‖ yi+1)
6: return gk

As a result of these algorithms we obtain the following theorem:

7

Theorem 17 (Merkle-Damg̊ard). Suppose Compress : {0, 1}m+t → {0, 1}m
is a collision resistant compression function, where t ≥ 1. Then there exists a
collision resistant hash function

h :
∞⋃

i=m+t+1

{0, 1}i → {0, 1}m.

The number of times Compress is computed in the evaluation of h is at most

1 +
⌈

n
t−1

⌉
if t ≥ 2,

2n + 2 if t = 1,

where |x| = n.

Proof. The proof works by contraposition. Suppose that we can find x 6= x′

such that h(x) = h(x′). We will show how we can find a collision for Compress
in polynomial time for the case that t ≥ 2 and |x| 6= |x′| (mod t− 1).

Denote

y(x) = y1 ‖ y2 ‖ · · · ‖ yk+1 and
y(x′) = y′1 ‖ y′2 ‖ · · · ‖ y′`+1.

In the case |x| 6= |x′| (mod t− 1) we have yk+1 6= y′`+1. Hence,

Compress(gk ‖ 1 ‖ yk+1) = gk+1 = h(x) = h(x′) = g′`+1

= Compress(g′` ‖ 1 ‖ y′`+1),

which is a collision for Compress, because yk+1 6= y′`+1.
The remaining cases are proved similarly.

3.2 The Secure Hash Algorithm (SHA-1)

In this section we give a description of the secure hash algorithm SHA-1. This
hash function was designed by NIST and NSA, modeled closely after the MD4
message digest algorithm by Rivest, and adopted as FIPS 180-1 standard.

SHA-1 produces an 160-bit message digest and is based on 32-bit word op-
erations:

AB bitwise AND of A and B
A ∨B bitwise OR of A and B
A⊕B bitwise XOR of A and B
¬A bitwise complement of A

A + B integer addition modulo 232

A� s circular left shift of A by s positions (0 ≤ s ≤ 31).

The padding scheme of SHA-1 uses MD-strengthening (see Figure 1) in order
to make the length of the input a multiple of 512 bits:

Algorithm 18. SHA-1-Pad(x)
Require: |x| ≤ 264 − 1
Ensure: |y| = 0 (mod 512)
1: d← (447− |x|) mod 512

8

x 1 0 · · · 0 `

Figure 1: MD-strengthening

2: `← the binary representation of |x|, where |`| = 64
3: return y ← x ‖ 1 ‖ 0d ‖ `

The main algorithm divides the padded input string into 512-bit blocks. The
compression function maps 160 + 512 bits to 160 bits and processes on these
blocks. It consists of 80 rounds and uses the round dependent functions

ft(B,C,D) =


BC ∨ (¬B)D, if 0 ≤ t ≤ 19,

B ⊕ C ⊕D, if 20 ≤ t ≤ 39,

BC ∨BD ∨ CD, if 40 ≤ t ≤ 59,

B ⊕ C ⊕D, if 60 ≤ t ≤ 79,

and round dependent word constants

Kt =


5A827999, if 0 ≤ t ≤ 19,

6ED9EBA1, if 20 ≤ t ≤ 39,

8F1BBCDC, if 40 ≤ t ≤ 59,

CA62C1D6, if 60 ≤ t ≤ 79.

The details of SHA-1 are given below:

Cryptosystem 19. SHA-1(x)
1: y ← SHA-1-Pad(x)
2: denote y = M1 ‖M2 ‖ · · · ‖Mn, where each Mi is a 512-bit block
3: H0 ← 67452301
4: H1 ← EFCDAB89
5: H2 ← 98BADCFE
6: H3 ← 10325476
7: H4 ← C3D2E1F0
8: for i← 1 to n do
9: denote Mi = W0 ‖W1 ‖ · · · ‖W15, where each Wi is a word

10: for t← 16 to 79 do Wt ← (Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16)� 1
11: A← H0

12: B ← H1

13: C ← H2

14: D ← H3

15: E ← H4

16: for t← 0 to 79 do
17: temp ← (A� 5) + ft(B,C,D) + E + Wt + Kt

18: E ← D
19: D ← C
20: C ← B � 30
21: B ← A
22: A← temp
23: end for

9

24: H0 ← H0 + A
25: H1 ← H1 + B
26: H2 ← H2 + C
27: H3 ← H3 + D
28: H4 ← H4 + E
29: end for
30: return H0 ‖H1 ‖H2 ‖H3 ‖H4

The Chinese researchers Wang, Yin and Yu showed that collision for SHA-
1 can be found with less than 269 hash operations. Since a birthday attack
would require about 280 hash operations, SHA-1 is broken (from the academic
cryptographer’s point of view).

4 Message Authentication Codes (MACs)

Related to hash functions are message authentication codes (MACs), which are
keyed hash functions hK satisfying certain security properties. They are used
to provide data origin authentication. In this scheme, Alice and Bob share a
secret key K that determines the hash function hK . A message x can then
together with its MAC hK(x) be transmitted over an insecure channel. When
Bob receives the pair (x, y), he can verify if y = hK(x). Someone who does not
know the secret key K should be unable to create a valid MAC.

So for a MAC algorithm to be secure, the following problem should be hard
to solve:

Problem 20. (Existential) Forgery
Instance: Valid pairs (x1, y1), . . . , (xq, yq) under unknown key K.
Find: A valid pair (x, y) such that x 6∈ {x1, . . . , xq}.

By (ε, q)-forger we denote a forgery with worse-case success probability ε.
Below we give two examples of MACs constructed from other cryptographic

primitives: HMAC and CBC-MAC.

4.1 Nested MACs, HMAC and CBC-MAC

A nested MAC is a composition of two hash families. Let (X ,Y,L,H) and
(Y,Z,K,G) be hash families where |X | > |Y| ≥ |Z|. The composition of these
hash families is the hash family (X ,Z,M,G ◦ H) in whichM = K × L and

G ◦ H =
{
(g ◦ h)(K,L) : gK ∈ G, hL ∈ H

}
,

where (g ◦ h)(K,L)(x) = gK(hL(x)) for all x ∈ X .
The following theorem shows that a nested MAC is secure, assuming that

the two hash families from which it is constructed satisfy appropriate security
requirements:

Theorem 21. Let (X ,Z,M,G ◦ H) be a nested MAC. Suppose there does not
exist an (ε1, q + 1)-collision attack for a randomly chosen function hL ∈ H,
where L is secret, and there does not exist an (ε2, q)-forger for a randomly
chosen function gK ∈ G, where K is secret. Further suppose there exists an
(ε, q)-forger for the nested MAC (g ◦ h)(K,L) ∈ G ◦ H. Then

ε ≤ ε1 + ε2.

10

HMAC is an example of a nested MAC algorithm that constructs a MAC
from an (unkeyed) hash function (see [BCK96]). We describe a version that is
based on SHA-1 and uses a 512-bit key K. Define the hexadecimal constants

ipad = 3636 · · · 36,
opad = 5C5C · · · 5C.

(512-bit)

Then the 160-bit MAC is defined as follows:

Cryptosystem 22. HMAC(x, K)

HMACK(x) = SHA-1((K ⊕ opad) ‖SHA-1((K ⊕ ipad) ‖x))

Note that the outer computation of SHA-1 requires only one application of
the compression function. If we assume, that SHA-1 used in this way is secure
as a MAC , and if we furthermore assume that the inner application of SHA-1
is collision resistant, then Theorem 21 tells us that HMAC is secure as a MAC.

Another popular way to construct a MAC is to use a block cipher in CBC
mode with a fixed initialization vector. Let (P, C,K, E ,D) be an endomorphic
cryptosystem, where P = C = {0, 1}t. Then CBC-MAC is defined as follows:

Cryptosystem 23. CBC-MAC(x, K)
1: denote x = x1 ‖ · · · ‖xn, |xi| = t
2: y0 ← 00 · · · 0
3: for i← 1 to n do yi ← eK(yi−1 ⊕ xi)
4: return yn

CBC-MAC is secure under certain assumptions about the randomness of the
underlying encryption scheme.

4.2 Unconditionally Secure MACs

In this section we will discuss MACs, that are unconditionally secure. For this
we will assume that a key is used to produce only one authentication tag. So an
adversary is able to make at most one query before he outputs a possible forgery.
Stated another way, we will construct MACs for which we can prove the non-
existence of an (ε, 0)-forger (impersonation) and an (ε, 1)-forger (substitution),
for appropriate values of ε, even if the adversary possesses infinite computing
power.

For q = 0, 1, we define the deception probability Pdq to be the maximum
value of ε such that an (ε, q)-forger exists. Let K0 be the key chosen by Alice
and Bob.

For x ∈ X and y ∈ Y we define payoff(x, y) to be the probability that (x, y)
is a valid pair. This means

payoff(x, y) = Pr [y = hK0(x)] =
|{K ∈ K : hK(x) = y}|

|K|
,

and hence
Pd0 = max {payoff(x, y) : x ∈ X , y ∈ Y} .

11

Now let (x, y) ∈ X × Y be a valid pair. For x′ ∈ X with x 6= x′ and y′ ∈ Y
we define payoff(x′, y′; x, y) to be the probability that (x′, y′) is a valid pair,
given that (x, y) is a valid pair. Then we can compute

payoff(x′, y′; x, y) = Pr [y′ = hK0(x
′) | y = hK0(x)]

=
Pr [y′ = hK0(x

′) ∧ y = hK0(x)]
Pr [y = hK0(x)]

=
|{K ∈ K : hK(x′) = y′, hK(x) = y}|

|{K ∈ K : hK(x) = y}|
.

If we denote by

V = {(x, y) : |{K ∈ K : hK(x) = y}| ≥ 1}

the set of pairs that are valid under at least one key, then we obtain

Pd1 = max {payoff(x′, y′; x, y) : x ∈ X , y, y′ ∈ Y, (x, y) ∈ V, x 6= x′} .

We now define a class of hash families that immediately yield authentication
codes in which Pd0 and Pd1 can easily be computed.

Definition 24. Let (X ,Y,K,H) be an (N,M)-hash family. This hash family
is strongly universal, if

|{K ∈ K : hK(x) = y, hK(x′) = y′}| = |K|
M2

for all x, x′ ∈ X such that x 6= x′, and for all y, y′ ∈ Y.

Lemma 25. Let (X ,Y,K,H) be a strongly universal (N,M)-hash family. Then

|{K ∈ K : hK(x) = y}| = |K|
M

∀x ∈ X ∀y ∈ Y.

Proof. Let x, x′ ∈ X such that x 6= x′, and let y ∈ Y. Then

|{K ∈ K : hK(x) = y}| =
∑
y′∈Y

|{K ∈ K : hK(x) = y, hK(x′) = y′}|

=
∑
y′∈Y

|K|
M2

=
|K|
M

.

Theorem 26. Let (X ,Y,K,H) be a strongly universal (N,M)-hash family.
Then (X ,Y,K,H) is an authentication code with

Pd0 = Pd1 =
1
M

.

Proof. Let x ∈ X and y ∈ Y. Then

payoff(x, y) =
|{K ∈ K : hK(x) = y}|

|K|
=
|K| /M
|K|

=
1
M

.

Now let x, x′ ∈ X such that x 6= x′, and let y, y′ ∈ Y, where (x, y) ∈ V. Then

payoff(x′, y′; x, y) =
|{K ∈ K : hK(x′) = y′, hK(x) = y}|

|{K ∈ K : hK(x) = y}|

=
|K| /M2

|K| /M
=

1
M

.

Therefore Pd0 = Pd1 = 1
M .

12

In [Sti02] it is shown that the converse of this theorem is also true and that
these deception probabilities are optimal.

Here is an simple example of a strongly universal hash family:

Example. Let p be prime. For a, b ∈ Zp define f(a,b) : Zp → Zp by

f(a,b)(x) = ax + b (mod p).

In order to prove that (Zp, Zp, Zp×Zp, {f(a,b) : a, b ∈ Zp}) is a strongly universal
(p, p)-hash family, we have to show that for x, x′, y, y′ ∈ Zp, where x 6= x′, there
is a unique key (a, b) ∈ Zp × Zp such that ax + b = y (mod p) and ax′ + b = y′

(mod p). But this follows from the fact that (a, b) is the solution of a linear
system of equations over the field Zp with determinant

det
(

x 1
x′ 1

)
= x− x′ 6= 0.

References

[BCK96] M. Bellare, R. Canetti and R. Krawczyk, ”Keying hash functions for
message authentication”, in Lecture Notes in Computer Science, 1109,
Springer-Verlag, 1996.

[BR93] M. Bellare and P. Rogaway, ”Random Oracles are Practical: A Para-
digm for Designing Efficient Protocols”, in ACM Conference on Com-
puter and Communications Security, ACM Press, 1993.

[Dam90] I. B. Damg̊ard, ”A design principle for hash functions.”, in Lecture
Notes in Computer Science, 435, Springer-Verlag, 1990.

[Mer90] R.C. Merkle, ”One-way hash functions and DES.”, in Lecture Notes
in Computer Science, 435, Springer-Verlag, 1990.

[Sti02] D.R. Stinson, Cryptography: Theory and Practice, 2nd ed., Chapman
& Hall/CRC, 2002.

[Sti04] D.R. Stinson, ”Some observations on the theory of cryptographic hash
functions”, preprint to appear in Designs, Codes and Cryptography,
2004.

13

