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Abstract

In this work we present so-called Knapsack-Based Public Key Cryptosystems and in par-
ticular Merkle - Hellman Cryptosystem .
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Introduction

We present the Knapsack Public Key Cryptosystems that were first implemented in 1978 by
R. Merkle and Hellmann and at once became quite popular because of its high speed and
elegance.

However, several attacks were made to break it that finally resulted in crash of Merkle -
Hellman Cryptosystem and almost all Knapsack-Based Cryptosystems.

The paper consists of 4 main sections. In Section 1 we get acquainted with Knapsack
problem itself and find out how it can be used in constructing Public Key Knapsack Cryp-
tosystem. Section 2 deals with the Knapsack Cryptosystem and describes the method used
in constructing it. Section 3 studies the algorithm analysis and consists of 2 subsections. In
Subsection 3.1 we perform the main features of the comparison between RSA and Merkle -
Hellman Cryptosystem. In Subsection 3.2 we discuss the problem of its security. In the last
Section 4 we perform two basic attacks that were made on this Cryptosystem and led to its
fall.

1 Knapsack Problem: setting, comlexity and basic
analyses

1.1 Problem Setting

The Knapsack Problem is one of the well - known discrete mathematics problems. The
problem that is used in constructing Cryptosystem being discussed is closely realted to it but
still is exactly called SubSet - Sum Problem.

The problem is, given an input of positive integers a1, ...,a, and s, to determine boolean
integers z1, ..., z, such that the following holds:
n
Z Zja; = 8.
j=1
If one looks at the a1, ..., a, as at the weights of items and at s as the capacity of the knapsack

then the problem is to find such a subset of these items that exactly fills the knapsack.

1.2 Possible Algorithms of Solving Knapsack

The main observation on the problem that helps to use it in Cryptography is that general
knapsack problem is known to be NP-complete and so it is believed to be hard to solve.

The trivial algorithm of solving the general Knapsack problem of n items is to consider all
possiblities that will obviously take O(2") time.

The better algorithm for solving the general Knapsack problem is the following.

1. Compute
[n/2]
S1 = zjaj|z; € {0,1}
7j=1

n

SQZS—{ Z wjaj|wj€{0,1}}

j=ln/2]+1
2. Sort them and scan for a common member. The common member y exists iff the corre-
sponding xj,j = 1...n give the solution:

[n/2] n n
ify = { zja;|z; € {0, 1}} =s5— { > zjajlz; € {0,1} } then s = ) za;
: —

j=1 j=[n/2]+1 J



Tt can be easily seen that the algorithm above demands O(n2"/2?) time and O(2"/2) storage
space.

Surprisingly enough, it’s still the fastest existing algorithm for solving general Knapsack
Problem.

1.3 Easy-solvable Knapsacks

Though as we have seen the general Knapsack is believed to be hard to solve, if we restrict
the problem somehow, we can get an easy solvable problem.
Let us consider the so-called super-increasing Knapsack that is the Knapsack with super-
increasing sequence of weights:
j—1
a; >Zai,2 <ji<n.
i=1
In this case the problem turns out to be linear-time solvable if we consider the following
algorithm:
for j = n downto 1 do
if s > a; then {z; =1;s = s —a;} else z; = 0;
return (z1,...,Zn)-
It is easy to see that the algorithm always gives a unique solution if it exists.

2 Description of the Knapsack Public Key Cryp-
tosystem

Every Public - Key Cryprosystem consists of 3 main procedures:
e Public and Private Key Generation that is made by the receiver
e Encoding Procedure that is made by the sender by means of Public Key
e Decoding Procedure that is made by the receiver by means of Private Key

Merkle - Hellmann Algorithm determines the details of these procedures.

e Key Generation.

1. Start with a super-increasing sequence of weights by, ...,b,, where n is a security
parameter such that

7j—1
by~ 2"b; > b;,2 < j<nby ~ 22"
=1

j—1
2. Choose M and W such that M > > b; and ged(M, W) = 1 by modulus M
i=1

3. Compute a} = bjW mod M,0 < a} < M. Tt is easy to see that ajl. will be nonzero.
4. Select arbitrary permutation 7 of {1,...,} and define a; = a}r(j)Vj =1,...,n
Conclusively, the public key is {a1,...,a,} and the private key is {b1,..., by, M, W, 7}
e Encoding Procedure:
If the sender wishes to send a message, he first of all shifts it to the pieces of length n

n
and encodes every piece {z1,...,2,} as s = ) z;a;
=1



e Decoding Procedure:

The receiver computes:

. L n
c=sW! mod M,0<c<M = c= E :I;jajW—l = E xjaﬁlr(j)W_l
=1 j=1

n
>~ Tjby ;) mod M.
j=1

n n
Since 0 < ¢ < M and 0 < ) x;b; < M, we get c = ) x;br(j).
The trick is that since {b1,...,b,} is a auper-increasing sequence, the receiver faces the

knapsack that is easy to solve.

The algorithm presented above is called singly iterated Merkle - Hellmann algorithm com-
paring to multiply iterated algorithm. It is constructed similarly but uses several iterations of
public and private key generation. That was considered to make it more secure, but was as
well broken several years after its construction.

The Key Generation in this case includes the following steps:

Let My = M, Wy = W,a") = alis)

n
Then My, Wi : My > 3 ol ", ged(My,, Wy,) = 1 and ai”) = a{* W), mod Mj.
j=1

3 Algorithm Analyses

3.1 Comparing to RSA

Merkle - Hellmann algorithm was proposed just a little later after the well-known Public -
Key RSA algorithm. So it is often compared with it. The basic results of comparison are the
following;:

e Merkle - Hellman algorithm with n as a security parameter is about 100 times faster
than RSA with m = pg when n is about 100 bits and m is about 500 bits.

e In Merkle - Hellman algorithm 7 bits are encoded in 2n bits whlie in RSA n bits are
encoded into the same 7 bitswith n.

e Public Key of Merkle - Hellman algorithm is of size 2n? bits while RSA’s Public Key is
of 2m bits.

e Merkle - Hellman algorithm assumes P # NP, while RSA assumes factorization is in
NP

3.2 Algorithm Security

From the very beginning of its existence many doubts were claimed about the security of
Merkle - Hellman algorithm. These are the basic doubts:
e What if P = NP?
It is clear that the crucial moment in security of the algorithm is the suggestion that
P#NP
e What if most instances of knapsacks used by the algorithm are easy to solve?

The algorithm assumes that general knapsack is hard to solve but it is concerned the
worst cases and not the average. So if one can just solve the encrypted knapsack, any
eavesdropper can read the plaintext.



e What if one can deduce from the public Knapsack what the construction method is?
When one faces the public knapsack, it is necessary for the security that one cannot find
the way to decrypt an easy solvable knapsack from it.

e This doubt is based on the interesting result of Brassard who proved that if breaking a
cryptosystem is N P-hard, then NP = Co— N P. Using it we get that if NP # Co— NP,
then breaking Merkle - Hellman algorithm cannot be N P-hard. So it is likely to be easier
to break it than to break the general Knapsack problem.

e Linearity of the equation always causes some suspicions about the method security. For
example, considering the equation by modulus 2:
n
s= ). zjaj mod 2,
i=1
we get a single bit of information about the plaintext. Nobody could ever makes use of
it but still this knowledge is considered doubtful for security.

As a result of all these general suspicions, several attacks were proposed to break Merkle -
Hellman Cryptosystem that finally led to its total crash.

4 Attacks to Merkle - Hellman Cryptosystem

There are two basic types of attacks used to break the system. The first of them relies on the
proposal that modular multiplication used to convert public knapsack into private one, doesn’t
disguise the private knapsack that is easy to solve securely enough. The second one tries to
solve the general knapsack under certain conditions so that one can solve public knapsack
without knowing private one.

4.1 Shamir polynomial algorithm for the singly-iterated Merkle-
Hellman, 1982

Here we will discuss the attck to singly iterated Merkle - Hellman algorithm as the attack to
the multiply iterated is rather similar.
Let U = W~! mod M. Then b,(;) = a;U mod M for Vj = 1,...,n.

So for some k; € Z a;jU — kjM = by(;) for Vj =1,...,n. Hence % - 2—; = %

This means that all of the I;—j are close to % Due to the choice of public knapsack weights
in Merkle - Hellman algorithm we see by,...,b; ~ 2" when ¢ is small enough.

Thus, if we put j; = 7r;1 we can get |kj, — aj, — kj a5, ~ 2". Now if we apply Lenstra’s
theorem that claims, that the integer programming problem in a fixed number of variables can
be solved in polynomial time, we can get k;, for « = 1,...,¢. By means of these integers we
can construct a pair (U!, M1): A[ff—ll close to % such that if we compute the weights ¢; by the
equation: c; = a]-U1 mod M!, 0 < cj < M', j =1,...,n, they will form a super increasing
sequence of weights when arranged in increasing order.

As it can be easily seen, these c; can be used to decrypt the message by solving an easy
knapsack.

The last difficulty is to find secret jq,. .., j; as permutation 7 is private. But it can be done
polynomially by considering all possible variants of them by using the fact ¢ is a constant.

4.1.1 Difficulties of Shamirs method

The crucial tool in the attack was Lenstras result on integer programming in a fixed number
of variables. However, Lenstras algorithm running time is given by a high degree polynomial.



Thus, it has never been implemented in practice. Continued fraction method can be used
instead of Lenstras result, but when the b; are large enough, it fails.

4.2 Lagarias and Odlyzko Attack, 1983

This attack provides a method to solve the general knapsack problem when weights are large
enough. This kind of knapsacks are also called low- density knapsacks. The attack uses the
lattica theory, so we will discuss the basic notions of it.

An integer lattice L is an additive subgroup of Z" that contains n linearly independent
vectors over R™. A basis (v;...,v,) of L is a set of elements of L such that L = {zjv1 +... +
ZnUn 1 % € Z}

The problem of the Shortest Lattice Vector is given a basis of the lattice L as an input to
find the shortest non-zero vector of L.

The problem is believed to be quite hard, yet it was not proved.

Lovasz proposed an algorithm of constructing the so-called Lovasz- reduced basis (v1, . .., vy)
from some basis where ||v1|| < 2! min{||z||?|z € L,z # 0}.

The low density attack itself is the following.

Given the a; as the public key and s as a cipher text, we form the (n+1)-dimensional

1 0 . 0 —a1
0 1 “e 0 —a9
lattice with basis 1 0 0 —a
0 0o ... 1 —a,
0 0 ... 0 8
U1
V2 n
Denoting the matrix by ... , we get the following equation: >’ z;a;+vp+1 = (21, z2,. .., %, 0)
o, i=1
Un+1
if {;[j = 1,...,n} form the solution of the public knapsack problem.
The miracle is that since z; = 0 or 1 for j =1,...,n}, the vector is very short.

Therefore, if we run the Lovasz lattice basis reduction algorithm on the basis and check if
the resulting reduced basis contains a vector that is a solution or not we can presume that we
will find the right solution to the public knapsack.

It is proved that we can solve knapsacks with a; ~ 2"° that is obviously extremely large!
But in practice it turns out much better.

Conclusion

As we have seen, doubts about the security of the knapsack cryptosystems turn out real. Most
cryptosystems were broken but still some of them (e.g. Chor - Rivest Cryptosystem) remain
unbroken up to now.

Nevertheless, due to the high speed of the algorithm, the fact that factorization and loga-
rithm procedures can turn out efficiently solvable someday and elegance of the algorithm itself
search of the cryptosystem that use knapsack problem inside is going on.
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