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Abstract

In the finite element method (FEM) one searches for a solution of
a partial differential equation (PDE) given in weak formulation in an
approximated discrete function space. Such a solution can be presented
as a linear combination of so called ansatz functions — this approach
equals the spline idea. The number of ansatz functions is finite, therefore
the equation system determining the combination of the basis functions
is solveable on a computer. The basis of all the ansatz functions together
defines the ansatz space, which is a vector space. If the number of ansatz
functions tends to infinity, then the solution is approximated better and

better.
Papers introducing the FEM most often use linear splines — hat func-
tions — for narrowing the solution. On squares often bilinear ansatz

functions are used. There are some drawbacks using a (bi-)linear function
basis. As we shall see, for some problems linear function spaces don’t
represent some laws of nature like energy conservation. In this case they
are not the appropiate way to find a solution. This paper is based on a
diploma (master) thesis of Cornelia Blanke [Blanke 04] done at the chair
of Prof. Zenger. Mrs. Blanke developed an ansatz space with improved
properties with respect of conservation laws for the Navier-Stokes equa-
tions. Her scientific supervisor was Dr. Miriam Mehl. Here some of the
ideas are presented of how to construct such ansatz spaces. The concept
is presented for the Navier-Stokes-equations, but the ideas and techniques
can be adopted for any PDE describing a physical phenomenon.



1 Motivation

1.1

Properties of numerical simulations

The quality of a numerical simulation of a real life phenomenon depends on a
number of properties of the methology chosen. In figure 1 some properties are

given:

consistency

mass conservation

/convergence
laws of nature/ \tability

grid independence

Figure 1: Properties of numerical methods.

Consistency A method is called consistent iff the error done by the discrete
differential operator tends to zero if one decreases the maximal mesh step
size. That means the local error done by the approximation tends to zero.

Convergence A method is called convergent iff the global error tends to
zero if one decreases the maximal mesh step size. For elliptic problems the
Lax equivalence theorem gives: If the method is convergent and stable,
the method is convergent, too.

Stability There are different types of stability. Most often stability with
respect to failures in the input data (the right hand side of the PDE) is
meant.

Grid Independence A good numerical method should be independent of
grid layout. That means, if the grid layout or mesh size is changed, the
character — e.g. the smoothness properties — of the solution does not
change.

Mass Conservation The mass of a system is constant if no mass is added
from outside.

Laws of Nature The energy and the momentum are not increasing with
time if no additional forces are added form outside. Such a system is called
closed.



1.2 Conservation laws

Most papers discuss stability and consistency of a system. But there are several
reasons to be interested in mass conservation and the laws of nature. If this
three conservation laws are not given, the result of the simulation becomes
physically incorrect. Furthermore there might occur a mass / energy explosion
- a phenomenon that occurs quite seldom in real life.

Xh,t

Figure 2: Simulation without conservation laws.

Figure 2 shows the problem: Here a time dependent probem is solved using
the time step size 7 (h always refers to the mesh size). In every Euler-step X-
conservation is not given. X might be mass, energy or momentum. Therefore
X might explode with increasing number of time steps. If X} is the discretized
phenomenon, the following has to hold:

Xn(t) < X(t) Vit (1)

1.3 Content of this paper

In this paper we will talk about the simulation of incompressible viscous fluids.
The behaviour of such fluids is given by the Navier-Stokes equations. First of
all the Navier-Stokes equations are presented and some of their properties and
the laws of nature built in are recapitulated. Afterwards properties of FEM
defined by Ciarlet are given. In our mind the FEM property conformity is
extremly important. We shall also present some of the principles of discretizing
the Navier-Stokes equations.

In our projects we work with octree based domain discretization of two
dimensional domains. This means, we work on square elements. The square
borders themself are of length 2kh, h € R, k € N. Therefore the simulation
of fluids using bilinear ansatz-functions is evaluated since this type of ansatz
functions seems to be the most obvious idea for squares. As we shall see, mass



conservation is not given for such finite elements. If mass conservation is not
given, energy and momentum conservation is not given, too.

Therefore bilinear ansatz functions are not conform with respect to the con-
servation laws. We will call equation (1) conservation conformity condition.
There are several approaches for handling this problem. Most approaches try
to fulfill this condition within the discretized equation system. We will trans-
form the condition to both the equation system and the ansatz space by using
more sophisticated ansatz functions than bilinear functions. As a result one is
able to fulfill condition (1) exact and pointwise for all three phenomenons.

2 Navier-Stokes equations

2.1 Degrees of freedom

Figure 3: The scalar pressure and the vector field velocity are point of interest.

In this paper the behaviour of incompressible viscous fluid shall be simulated.
That means the density of the medium is assumed to remain constant all the
time. Therefore there are three degrees of freedom (properties) to be observed
in every point of the domain: The velocity and the pressure.

The pressure (denoted p) is a scalar value. The velocity (denoted ) is a
vector-field. Therefore the velocity is given by two degrees of freedom: The
velocity parallel to the z-axis and the velocity parallel to the y-axis.

u:QCR? —» R?



p:QCR? — R,
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u(t,x1,x2) = ( ua(t. 1. 2) ) =: u(t, z),
p(tJ w1a$2) = p(t,a:) (2)

2.2 Notation

Different papers use different notations for mathematical operators. Therefore
in this paper the meaning of the operators is defined explicitly:
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where uVu; and uVus denote an inner vector product (scalar product).

2.3 Navier-Stokes equations

The Navier-Stokes-equations are given by

0 1

JR— —_— — 4

5 + (uV)u ReAu + Vp fs (4)
divu = 0. (5)

Equation (4) is referred as momentum equation, equation (5) is referred as

conservation equation. The momentum equation is a second order nonlinear
elliptic PDE. The different parts of the sum have different meaning;:

. %u denotes change of velocity with respect of time.

e The nonlinear part (uV)u is called convection. It is responsible for tur-
bulence. If (uV)u = 0 is assumed, the remaining linear equation is called
Stokes-equation.

e #-Au is created by friction. One calls this part the diffusion. If friction
is neglected, the remaining nonlinear equation is called Fuler-equation.



e Vp denotes the the pressure.

e f represents outer forces, e.g. the force of gravity.

The conservation equation enforces mass conservation. Within the momen-
tum equation both energy and momentum conservation are built in.

3 FEM — a definition

FEM is not a well defined term. Several people prefer their own defintions.
We want to cite the ideas of the finite element method defined by Ciarlet. In
this paper the Sobolev-space relations and the term conformity are the most
important issues.

3.1 Regular grids

S~

724’./ N

Figure 4: Domain representation by an octree structure.

FEM works on a discrete domain representation!. The set of finite geometric
elements is denoted 7. For every regular grid

VT € T : T not empty, (6)
UrerT = Q, (7
TN Tj =0 or T; = Tj VT,',T]' eT (8)

L Again all definitions are given for two dimensions.



has to hold. Furthermore the intersection of the two geometric elements
is either the complete element, a vertex, a complete edge or empty. This last
condition is called no hanging points condition.

Figure 4 shows a part of a domain approximation by square elements. The
empty circles denote hanging points. Such points are not allowed in the sense of
Ciarlet. We do not place degrees of freedoms (unknowns) in the hanging points,
therefore our triangulation can be assumed to be regular. But this topic is not
part of this paper.

3.2 Ansatz space

On every geometric element functions are defined. Sometimes this functions
are called shape functions. Both a geometric element and the shape function
together are called finite element. All the shape functions together create the
set of ansatz functions — the ansatz space.

In FEM this ansatz functions have two important properties: First of all
they have local support. Furthermore they are polynomials. Depending on the
degrees of freedom placed on the finite element the finite element is assigned
different classes of finite elements.

If only the values on the vertices are given and one uses linear interpolation
(hat functions), the resulting element is called linear Lagrange element. For
squares bilinear shape functions correspond to one degree of freedom in every
vertex. If on the vertices the derivative is given, too, the resulting elements
are called Hermite element. There’s a huge number of more complicated finite
elements, we do not want to consider.

Ciarlet uses the theory of affine families for characterizing FEM, too. We
will not talk about this issue.

3.3 Conformity

The FEM is based on the weak formulation of a PDE. Several well known
proofs show that the solution of a weak formulation may not be contained in
a ”standard” function space. Therefore the solution is searched in an extended
function space, called Sobolev space. This space contains more elements than
the classical solutions of a PDE and shall be denoted as H™ (m € N).

The theorems of Rellich and Kontrasov give some important subset relations
between different Sobolev spaces. One of the most important results is the
relation

H™ CC. 9)

This means every function contained in H™ is continous. A FEM is called
conform iff the approximated funtion space V is a subset of the Sobolev space
the solution is contained in.

VcH™ dimV < o (10)



Physically interpreted this means, every solution contained in V' could occur
in reality, but doesn’t for every system tries to minimize its inner energy. For
Navier-Stokes equations this definition of conformity is too general for there’s
no restriction on the elements of V' with respect to their conservation behaviour.
Therefore we have introduced our conservation conformity condition in equation
(1). So in our opinion for FEM simulations equation (1) and (10) are the
requirements for every approach to be called conform.

4 Grids for the Navier-Stokes equations

We want to use square elements for the simulation of the Navier-Stokes equations
and very simple ansatz functions. Different elements have been developed, but
only one type is suitable for conform FEM for the restrictions on the elements
defined by Ciarlet.

4.1 Colocated element

u, u,p
e e
u,pe; }l'p

Figure 5: A colocated finite element.

The first idea is to use a colocated grid. Here all three degrees of freedom are
placed on the element vertices. This approach is the natural way of designing an
element for FEM. The bad thing about it is that when using such an element,
oszillations might occur. The proof showing this oszillations introduces the term
checkerboard condition. As a result the only place to locate the pressure in is
the center of the element.

4.2 Fully staggered grid

The most common element used in the Finite Volume method is the fully stag-
gered grid. Here the pressure dof (degree of freedom) is located in the center of
the square, the velocities are located in the center of the borders.

Using this dof layout the solution remains stable — no artificial oszillations
will occur. Nevertheless this layout is not suitable for the FEM since the solution
for the velocity is non-continous using linear splines.



Figure 6: A fully staggered grid.

4.3 Partially staggered grid

As a result we will use a partially staggered grid. Here the pressure is simulated
in the center of the element, the velocity is approximated on the element ver-
tices. Such elements are called Q1 Py, for they approximate the velocity with
bilienar ansatz functions (@)1) and assume the pressure to be constant within
the element. That means the pressure is assumed to be a polynomial of degree
zero (Fp).

Figure 7: A partially staggered grid.

5 Discrete mass conservation

The first thing one should concentrate on is how to transform the mass conser-
vation equation (5) to the linear equation system. The resulting system of linear
equations will be called discrete conservation condition or discrete conservation
equations.

If (5) holds, one can apply the Gauss theorem for every subset U C {2 since
the solution is assumed to be sufficient smooth. The domain representation
using squares gives us a set of such subsets called control volumes. Therefore



Figure 8: Bilinear velocity on a two dimensional control volume.

divu=0 = divudx = 0,
U
/ divudr = / (u,n)dS(&) + / (u,n)dS(€) +
U I'io Loy
[ wmds@©+ [ wmas
T3 T'z1
as — aq a]; — as bl—bz b3—b4 _
= 5 h— 2 h+ 5 h— 5 h=0 (11)

is the discrete mass conservation for every finite element. Here the velocity
is assumed to be linear along the element borders, n is the normal vector and
(u,n) is a scalar product.

The scalars a and b are the values of the unknowns placed in the vertices. One
is able to evaluate the integral algebraic since the normal vectors are known for
the very simple domain discretization (n € {(1,0)7, (—1,0)T, (0,1)7, (0,-1)T})
and the velocity is linear along the element borders. Applying the formula
(11) on every control volume you get a equation system. This equation system
represents the discrete mass conservation.

6 Bilinear shape functions

We have placed two degrees of freedom on the element vertices for the veloc-
ity. Furthermore we have assumed the velocity to be linear along the element
borders. It seems to be the best way to use bilinear elements to satisfy this
assumptions.

Using bilinear ansatz functions for approximating a function u : R? — R?
the solution up on one element (the standard square) can be denoted as

10



<i>1(z) = 2z,
<i>2(z) = 1-—2z,
Boo(x1,22) = Bo(z1) * Dy(22),
Dio(w1,72) = ®1(z1)* Da(2),
Bo1 (21, 22) = <i>2(a:1) * <i>1(:v2),
Q11 (w1, 72) = @1(931) * ‘i’l(-%'z),
up(z1,22)lu = (a1,b1) ®o1(z1,22) + (a2, b2)T @11 (21, 2)
(as,bs) T ®oo (1, x2) + (a4, bs)T @101, 22). (12)

®00(0,0) =1  $go(1,0) =0
Bpp(0,1) =0  Pge(1,1) =0
015(0,0) =0  &,0(1,0) =1
$,0(0,1) =0 d10(1,1) =0

(13)

Since uy, is a linear combination of the bilinear shape functions, u; again is
bilinear and can be written as

( a1(1 — 371).’1,'2 + asx129 + a3(1 — 1‘1)(1 — .Z'Q) + a4m1(1 — .Z'Q) )

uh(ml’x2)|U b1(1 — ml).’Ez + baz1To + bg(]. — .Z'l)(l — 3&'2) + bazy (1 — .’L'Q)

11



Figure 10: Same ansatz function from another point of view.

_ a; +as + (a4 — ag).CUl + asxs + (—a1 + as + a3 — a4)a:1$2
bi + b3 + (bg — b3)xq + bgwa + (—by + by + b3 — by)z 122

We use this formulation to compute the value of the div-operator on the

control volume U and get

divuh($1,$2)|y

= (a4 — a3) + (—01 + as + as — a4)x2
+ bs+ (—b1 + by + b3 — b4).’L‘1. (15)

One can see: Although discrete mass conservation is given, pointwise mass
conservation is not given. Therefore the conformity condition is not fulfilled.

7 Linear shape functions

If we would use linear shape functions the corresponding functions would be:

<I>00 (161,.1'2) =
®1o(z1,22)
D1 (21, 22)

up(z1,22)|ly =

11—z — 9,

Ty,

T2,

(a1,b1)T ®oo (71, 72) + (az,b2)T @1 (21, 2)
+(as, bs) T ®o1 (z1, z2)

a1(1 —z1 — x2) + azx2 + azxy
b1(1— 1 — 22) + baxa + b3xy

12

)



x2

(az2,p2)

Figure 11: Linear shape function (here shape function ®qg is displayed).

a1 + (—a1 + az)zy + (a1 + az)zs (16)

b1 + (=by + b3)x1 + (—b1 + b2)xo

Obviously the div operator is constant on the whole element:
divuh(m1,$2)|U = —ai; + a3z — by + bs. (17)

Therefore if one fixes the value of four degrees of freedom on two vertices we
can derive conditions for the values of the remaining two degrees of freedom to
get divu, = 0.

8 A more sophisticated element

As shown before, bilinear ansatz functions do not fit the requirements written
down in the very beginning of this paper. Since the value of the div-operator
depends on the coordinates, there’s no way to alter them to fit them. The
div-operator is constant on linear elements and if one is allowed to choose the
values of the dofs on the third vertex, one is able to ensure div = 0 within the
element.

Therefore we split up every square element into four triangles. Let’s assume
the discrete mass conservation (11) holds, then the two values of the velocity in
the center can be chosen in a way, the continous mass conservation (5) holds.
To do so we apply equation (11) on every triangle:

13
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Figure 12: Layout of the degrees of freedom in the new finite element.

1
ay = Z(a1+a2+a3+a4—b1+b2+b3_b4)
1
by = Z(_al.+.612-{-a3—a4+bl-{-172-1-1734-174)- (18)

As one can see altering the value of a degree of freedom assigned the first
component of the velocity also changes the value of the second component of the
solution. Therefore one is able to fulfill the continous conservation law which
also composes the two component of the solution. As a result one can say: If in
the PDE the two components of the solution are coupled, the two components
of the ansatz functions should be coupled, too.

9 Energy conservation

We’ve constructed an ansatz space which gives us mass conservation in every
point. The shape functions of this ansatz space are still piecewise linear. There-
fore using them within a FE program should not be a difficult task. In the very
beginning of this paper we’ve defined the term conformity with respect to all
three conservation laws.

The big advantage of using our ansatz functions is, that mass conservation
implies energy and momentum conservation. To proof this will be topic of this
chapter. For reasons of simplicity we will only talk about energy conservation.
The proof for the momentum conservation is similar.

First of all we will show what energy conservation means for the discrete
approximation: We will derive some requirements for the discretization matri-

14
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Figure 13: Ansatz function for the first component.

ces. Afterwards one can prove, that using our ansatz functions the resulting FE
matrices fit the requirements. This final step is very technical, therefore we will
not do it in this short paper. See [Blanke 04] for a detailed description.

9.1 Continous energy conservation
Energy is defined as

5:=/p|u|2d$.
Q

In this paper we are talking about incompressible fluids.
constant throughout the domain Q and energy conservation is given by

(19)

Therefore p is
0 &

9 >
=== dx <0. 20
55 = oo [ IuPde < (20)
For u is sufficiently smooth the energy conservation can be written without
integral:
=650 =
ot —
0
EW(IEN2

§|u(w)|2 <0 Vze

(u(e),u(@) = ( gu(e)u(@)) + (ula)
=(6

au(m)) ’ u(z) +u’' (z) (%u(x))

(21)
15
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Figure 14: Corresponding ansatz function for the second component.

= 2 (%u(x))Tu(m) <0 (22)

Transforming the problem to the discrete case we will use formula (21) in-
stead of the simpler formula (22), for if one inserts a discrete approximation in
(22) you have to ensure the approximation is symmetric. If one uses formulation
(21) the result is symmetric anyway.

9.2 Discrete energy conservation

If one calculates the equations for the discrete mass conservation (see (11)) and
uses any test function to get a weak formulation of the momentum equation the
result can be written as

Qup» + C(up)up + Dup, — MTpy, =0, (23)
Muh =0.

Here Q,C, D and M are matrices. We apply this notation often referred as
semi-discrete Navier-Stokes-equations on (21) and get

o \" (0 T T
(auh) up + up, (auh> = (Qup,) up+up Qup -
up (—C(up) — CT(up) — D — D) up +
ui M py + pp M uy

16



= —uf (C(up) + CT(up) + D + D7) uy,
< 0. (24)

If friction is neglected, energy has to remain constant. This means one has
to replace the less equal sign by equality. Furthermore the matrix D represents
friction and therefore has to be the zero matrix. As a result one gets

C(up) +CT(up) =0 (25)

and therefore needs an antisymmetric convection matrix C. Since the non-
linear term equals zero, the diffusion part (D+ D7) has to be positiv semidefinit:

—ul (D +DT)u, <0 (26)

We’ve now defined how the matrices of the discrete equation system have
to look like. The further proceeding is straight forward: Just use the ansatz
functions to write down the matrices explicitly and afterwards verify their prop-
erties. This is a very technical process and we suggest to use a computer algebra
system like Maple for such work. Nevertheless the result is, every matrix fits
the requirements derived in this chapter.

10 Conclusion

We’ve presented ansatz functions that give us mass, momentum and energy
conservation all the time during simulation. As a result the results of the FEM
simulation should become more accurat (physically correct) and no energy ex-
plosion could occur. This is especially important for simulations long running.

The main idea of this paper is to use the freedom of choice of the ansatz
functions to guarantee the laws of nature. As a result the ansatz functions of
the two components have to be coupled since in the Navier-Stokes equations the
two components are coupled by the continuity equation, too. We are able to
fulfill the second partial differential equation exactly and to approximate only
the first one.

The idea of redefining the term conformity with respect to the laws of nature
could be applied on any partial differential equation. As a result one should gain
the same advantages.

Right now we are implementing the ideas presented here within a very fast
FEM framework developed at the chair of Prof. Zenger. Doing so we are
applying this approach in context within several other sophisticated techniques:
Multilevel solvers, high cache efficiency programs, auto-scaling parallelization
algorithms and so on. Beside getting some practical experience in working
with such ansatz functions we will get a deeper insight in the ansatz space
modelling process. Afterwards we shall be able to tell which parts of this process
are technical and can be done by tools and where modelling tools and FEM
cookbooks can support the user applying FEM on specific application domains.

17
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