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Abstract

This is an introductory review of quantum calculations. Quantum Logic and some of
aspects of quantum computing are given here. Two main quantum algorithms are also repre-
sented. It is intended for non-specialists which have basic knowledge on undergraduate Linear
Algebra. It’s common review, and, for further study you should use another, more specialized,
literature.
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1 Introduction

I have put all efforts to write as clear as possible for non-specialists, but i don’t think that
this paper is easy for comprehension. Section 2 contain basics for quantum computing, like
quantum logic and controlling operations. All it are need for further understanding of using
it in algorithms. I assume familiarity with undergraduate Linear Algebra, which is the main
mathematical basis of Quantum Mechanics. Section 3 show the first quantum algorithm,
Shor’s Algorithm, it was developed for finding the prime factors of a composite number N.
Section 4 is dedicated to algorithm for search task, Grover’s Algorithm. I don’t give practical
scheme or realization of algorithms, because it is not the theme of this paper and I can give
only references on it.

2 Foundations

In classical computers, a bit can assume only values 0 or 1. In quantum computers, the values
0 and 1 are replaced by vectors |0) and |1). This notation for vectors is called Dirac Notation
and is standard in Quantum Mechanics. The name bit is replaced by qubit, short of quantum
bit. The difference between bits and qubits is fact that a qubit |¢)) can also be in a linear
composition of vector |0) and |1),

[¥) = a|0) + A1), (1)

where o and (8 are complex numbers, |1)) is said to be a superposition of the vectors |0) and
|1) with amplitudes o and (. Thus, |1)) is a vector in two-dimensional complex vector space,
where {|0),|1)} forms an orthonormal basis, called the computational basis. The state |0) is
not the zero vector, but simply the first vector of the basis. The matrix representations of the

vectors |0) and |1) are given by
1 0
w=[1] wa =[]

In Quantum Mechanics, vectors are systematically called states.

The physical interpretation of |¢)) is that it coexists in two states: |0) and |1). It is
similar to a coin that is partially heads up and partially tails up simultaneously. We cannot
push further analogy simply because quantum phenomena do not have a classical analogue in
general.

The state |t) can store a huge quantity of information in its coefficients o and 3, but this
information lives in quantum level, which is microscopic (usually quantum effects appear in
atomic dimensions). To bring quantum information to classical level, one must measure a
qubit. Quantum Mechanics tells us that the measurement process inevitably disturbs a qubit
state, producing a non-deterministic collapse of [¢) to either |0) or |1). One gets |0) with
probability |a|? or |1) with probability |3]2. The non-deterministic collapse does not allow
one to determine the values of a and 8 before the measurement. They are inaccessible via
measurements unless one has many copies of the same state. Two successive measurements
of the same qubit give the same output. If |@|? and |S|? are probabilities and there are only
two possible outputs, then

jaf? +1* = 1. (2)

A measurement is not the only way that one can interact with a qubit. If one does not
obtain any information about the state of the qubit, the interaction changes the values of «
and [ keeping the constraint (2). The most general transformation of this kind is a linear
transformation U that takes unit vectors into unit vectors. Such transformation is called
unitary and can be defined by

vlv =uvut =1,



where Ut = (U*)T (x indicates complex conjugation and 7" indicates the transpose operation)
and [ is the 2 x 2 identity matrix.

So far we are dealing with one-qubit quantum computers. To consider the multiple qubit
case, it is necessary to introduce the concepts of tensor product. Suppose V and W are
complex vector spaces of dimensions m and n, respectively. The tensor product V ® W is an
mn-dimensional vector space (generally, there are several conditions for this space, you can
know more about it by yourself). I use also the notations |v)|w), |v,w) or |vw) for the tensor
product

|v) ® fw).

Note that the tensor product is non-commutative, so the notation must preserve the ordering.
Given two linear operators A and B defined on the vector spaces V' and W, respectively,
we can define the linear operator AQ Bon V @ W as

(A® B)(|v) ® |w)) = Alv) @ Blw) (3)
where |v) € V and |w) € W. The matrix representation of A @ B is given by

Ay B .- AlmB
A®B = : : (4)

AmiB - ApmB

where A is m x m matrix and B is n X n matrix (using the same notation for the operator
and its matrix representation). So, the matrix A ® B has dimension mn x mn. The formula
(4) can also be used for non-square matrices, such as the tensor product of two vectors. For
example, if we have a 2-qubit quantum computer and the first qubit is in the state |0) and
the second is in state |0), then the quantum computer is in the state |0) ® |1), given by

e =on=|y]e|!]- ®)

SO = O

The resulting vector is in a 4-dimensional vector space. The general state |1)) of a 2-qubit
quantum computer is a superposition of the states |00), |01), [10) and |11},

|9) = |00) + 5[01) +~[10) + 4[11), (6)

with the constraint
o + 181 + Iy* + 10 = 1.

Regarding the zeroes and ones as constituting the binary expansion of an integer, we can re-
place the representations of states {|00), |01}, |10}, |11)}, by the shorter forms {|0),|1),]2),[3)}
in decimal forms, which is handy in some formulas.

The state of an n-qubit quantum computer is a vector in a 2"-dimensional complex vector
space. When the number of qubits increase linearly, the dimension of the associate vector space
increase exponentially. As before, a measurement of a generic state |1) yields the result |ig)
with probability |a;,|?, where 0 < iy < 2". Usually, the measurement is performed qubit by
qubit yielding zeroes or ones that are read together to form ig. I stress again a very important
feature of measurement process. The state |¢)) as it is before measurement is inaccessible
unless it is in computational basis. The measurement process inevitably disturbs |¢) forcing
it to collapse to one vector of the computational basis. This collapse is non-deterministic,
with the probabilities given by squared norms of the corresponding amplitudes in |)).

The general 2-qubit state is not necessarily a product of two one-qubit states. Such non-
product states of two or more qubits are called entangled states, for example, (|00)+]11))/v/2.
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Figure 1: Quantum computer.

The entangled states play an essential role in quantum computers. On the other hand, a naive
use of entanglement does not guarantee any improvements.

After the above review, we are ready to outline the quantum computer. In Fig. 1, we
are taking a non-entangled input, what is quite reasonable. In fact, |¢;) is either |0) or |1)
generally. |¢), on the right hand side of figure, is the result of the application of unitary
operation U on the input. The last step is the measurement of the states of each qubit, which
returns zeroes and ones that form the final result of the quantum calculation. Note that there
is, in principle, an infinite number of possible operators U, which are unitary 2" x 2" matrices.

Let’s speak about Quantum Circuits (Gates), and start with one-qubit gates.

In the classical case there is only one possibility, which is the NOT gate. The NOT
gate inverts the bit value: 0 goes 1 and vice-versa. The straightforward generalization to the
quantum case is given in fig 3, where X is the unitary operator

0 1
X = .
o]
So, if input |¢) is |0), the output is |1) and vice-versa. But now we can have a situation
with no classical counterpart. The state |1)) can be in superposition of states |0) and |1). The

general case is |¢)) = «|0) + (|1) and the corresponding output is «|1) + 3]0).
The Hadamard gate is another important one-qubit gate, given by

[t 4]

It is easy to see that H|0) = (|0) + |1))/v/2; H|1) = (|0) — [1))/v/2. If input is |0), the
Hadamard gate creates a superposition of states with equal weights. This is a general feature,
valid for two or more qubits. Thus, the tensor product of n Hadamard operators produces an
equality weighted superposition of all computational basis states, when the input is the state
|0).

Another important 2-qubit quantum gate is CNOT gate. It has two input qubits, the
control and the target qubit, respectively. The target qubit is flipped only if the control qubit
is set to 1. The action of the CNOT gate can also be represented by

|a,b) = la,a ®b),



where @ is addition modulo 2.

CNOT and the one-qubit gates form a universal set of gates. This means that any other
gate, operating on 2 or more qubits, can be written as compositions and direct products of
CNOT and one-qubit gates.

3 Shor’s Algorithm

Let us describe Shor’s algorithm for finding the prime factors of a composite number N. Think
of a large number such as one with 300 digits in decimal notation, since such numbers are
used in cryptography. Though N is large, the number of qubits necessary to store it is small.
In general logy N is not an integer, so let us define

n = [logy N].

Reduction of factorization of N to the problem of finding the order of an integer x less
than N is as follows. If z and N have common factors, then GCD(x, N) gives a factor of N,
therefore it suffices to investigate the case when x is coprime to N. The order of £ modulo N
is defined as the least positive integer r such that

2" mod N =1

If r is even, we can define y by
2% mod N =y

The above notation means that y is the remainder of 2"/2 divided by N and, by definition,
0 <y < N. Note that y satisfies y mod N = 1, or equivalently (y — 1)(y + 1) mod N = 0,
which means that N divides (y — 1)(y +1). If 1 <y < N — 1, the factors y — 1 and y + 1
satisfy 0 <y —1 <y+1 < N, therefore N cannot divide y — 1 nor y + 1 separately. The only
alternative is that both y — 1 and y + 1 have factors of N (that yield N by multiplication).
So, GCD(y — 1,N) and GCD(y + 1, N) yield non trivial factors of N (GCD stands for the
greatest common divisor). If N has remaining factors, they can be calculated applying the
algorithm recursively.
Consider N = 21 as an example. The sequence of equivalences

24 =16 mod 21
25 =11 mod 21
26 =11%x2=16 mod 21

show that the order of 2 mod 21 is 7 = 6. Therefore, y = 23> = 8 mod 21. y — 1 yields the
factor 7 and y + 1 yields the factor 3 of 21.

In summary, if we pick up at random a positive integer = less than N and calculate
GCD(xz,N), either we have a factor of N or we learn that z is coprime to N. In the latter
case, if z satisfies the conditions (1) its order r is even, and (2) 0 < y—1 <y+1 < N,
then GCD(y —1,N) and GCD(y + 1, N) yield factors of N. If one of the conditions is not
true, we start over until finding a proper candidate z. The method would not be useful if
these assumptions were too restrictive, but fortunately that is not the case. The method
systematically fails if IV is a power of some odd prime, but an alternative efficient classical
algorithm for this case is known. If N is even, we can keep dividing by 2 until the result turns
out to be odd. It remains to apply the method for odd composite integers that are not a power
of some prime number. It is cumbersome to prove that the probability of finding = coprime
to N satisfying the conditions (1) and (2) is high; in fact this probability is 1 —1/2¥~1, where
k is the number of prime factors of N. In the worst case (N has 2 factors), the probability is
greater than or equal to 1/2.



At first sight, it seems that we have just described an efficient algorithm to find a factor of
N. That is not true, since it is not known an efficient classical algorithm to calculate the order

of an integer  mod N. On the other hand, there is (after Shor’s work) an efficient quantum
algorithm.
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Figure 2: Scheme of Shor’s algorithm.

Consider the circuit of Fig 2. It calculates the order r of the positive integer x less than
N, coprime to N. V, is the unitary linear operator

Va(15) k) = 17)[k +27), (7)

where |j) and |k) are the states of the first and second registers, respectively. The arithmetical
operations are performed modulo N, so 0 < k 4+ 2/ < N. DFT is the Discrete Fourier
Transform operator.

The first register has ¢ qubits, where ¢ is generally chosen such that N? < 2/ < 2N2. As
an exception, if the order r is a power of 2, then it is enough to take ¢ = n. In this section I
consider this very special case and leave the general case for other discussion.

The states of the quantum computer are indicated by |1g) to |i5) in fig. 5. The initial
state is

|1o) = |0..(t times)..0)|0..(n times)..0).
The application of the Hadamard operator on each qubit of the first register yields

2t—1

1 )
) = 7= JX; 15)10). (8)

The first register is then in a superposition of all states of the computational basis with equal



amplitudes given by 1/v/2f. Now we call attention to what happens when we apply V, to |¢1):

2t—1 2t—1

[h2) = Vi) = Zv (15}/0)) Zu |z7) 9)

The state |1);) is a remarkable one. Because V, is linear, it acts on all |)]|0) for 2 values of 7,
so this generates all powers of x simultaneously. This feature is called quantum parallelism.
Quantumly, one can calculate all powers of z with just one application of V,,. At the quantum
level, the values of j that yield 2/ mod N =1 are "known”. But this quantum information is
not fully available at the classical level. A classical information of a quantum state is obtained
by practical measurements and, at this point, it does not help if we measure the first register,
since all states in the superposition (9) have equal amplitudes. The first part of the strategy
to find r is to observe that the first register of the states |0)|1),|r)[1),|2r}|1), ..., |28 — r)|1) is
periodic. So the information we want is a period. In order to simplify the calculation, let us
measure the second register. Before doing this, we will rewrite |12) collecting equal terms in
the second register. Since z/ is a periodic function with period r, substitute ar + b for j in
Eq. 9, where 0 < a < (2t/r) —1 and 0 < b < r — 1. Recall that we are supposing that ¢t = n
and r is a power of 2, therefore r divides 2t. Eq. 9 is converted to

r

L
lhy) = Qtz 2;)|ar+b) |z°). (10)

A Probability distibution

b r+b 2r+b Terms of
0 0 0 Ws)
3
Figure 3: Scheme of Shor’s algorithm.
In the second register, we have substituted xb for 2%+t since " = 1 mod N. Now
the second register is measured. Any output 2%, ', ..., 2"~! can be obtained with equal

probability. Suppose that the result is 2% . The state of the quantum computer is now

) =[5 | D lar +bo) | lab)- (1)

Note that after the measurement, the constant is renormalized to /7/2!, since there
are 2'/r terms in the sum (11). Fig 3 shows the probability of obtaining the states of the
computational basis upon measuring the first register.



The probabilities form a periodic function with period r. Their values are zero except
for the states |by), |r + bo), |27 + bo), ..., |28 — 7 + by). How can one find out the period of
a function efficiently? The answer is in the Fourier transform. The Fourier transform of a
periodic function with period r is a new periodic function with period proportional to 1/r.
This makes a difference for finding . The Fourier transform is the second and last part of
the strategy. The whole method relies on an efficient quantum algorithm for calculating the
Fourier transform, which is not available classically.

4 Grover’s Algorithm

Let a system have N = 2" states which are labelled 51,S5s,...,S5. These 2" states are rep-
resented as n bit strings. Let there be a unique state, say .S, that satisfies the condition
C(Sy) = 1, whereas for all other states S, C(S) = 0 (assume that for any state S, the
condition C(S) can be evaluated in unit time). The problem is identify the state S,,.

This could represent a database search problem where the function C'(S) is based on the
contents of memory location corresponding to state S. Alternatively, if could represent a
problem where the function C'(S) was being evaluated by the computer.

Steps (1) and (2) are a sequence of elementary unitary operations.Step (3) is the final
measurement by an external system.

1. Initialize the system to superposition: (ﬁ, \/LN’ \/LN’ e ﬁ), i.e. there is the same

amplitude ti be in each of the NV states. This superposition can be obtained in O(log(NN))
steps.

2. Repeat the following unitary operations O(v/N) times:

(a) Let the system be in any state S: in the case C(S) = 1, rotate the phase by «

radians; in the case C(S) = 0, leave the system unaltered.

(b) Apply the diffusion transform D which is defined by matrix D as follows: D;; = %

ifi #jand D;; = —1+ % This D-transform can be implemented as product of 3
elementary operators as discussed later.

3. Measure the resulting state, This will be the state S, (i.e. the desired state that satisfies
the condition C(S,) = 1) with probability of at least 0.5.

Note that step 2(a) is a phase rotation transformation. In an implementation it would
involve a portion of the quantum system sensing the state and then deciding whether or not
to rotate the phase. It would do it in a way so that no trace of the state of the system
be left after this operation so as to ensure that paths leading to the same final state were
indistinguishable and could interfere.

The loop in step 2 above, is the heart of algorithm. Each iteration of this loop increases
the amplitude in the desired state by O(1/v/N). As a result in O(v/N) repetitions of the
loop, the amplitude and hence the probability in the desired state reach O(1). In order to see
that the amplitude increases by O(1/v/N) in each repetition, we first show that the diffusion
transform, D, can be interpreted as an inversion above average operation. This operation, as
described below more precisely, is also unitary operation, and is equivalent to the diffusion
transform D as used in step 2(a).

Let o denote the average amplitude of over all states, i.e. if a; be the amplitude in ¢
state, then the average is % Zf\;l «;. As a result of the operation D, the amplitude in each
state increases (decreases) so that after this operation it is as much below (above) a. as it
was above (below) a before the operation.

The diffusion transform, D, is defined as follows: D;; = %, if1 # 7 and D = -1+ %
Observe that D can be represented in the form D = —I + 2P where [ is the identity matrix
and P is a projection matrix with P;; = % for all 4, 5. The following two properties of P are

th
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easily verified: first, that P? = P, and second, that P acting on any vector 7 gives a vector,
each of whose components is equal to the average of all components.

Using the fact that P2 = P, it follows immediately from the representation D = —I + 2P
that D? = I and hence D is unitary.

In order to see that D is is the inversion about average, consider what happens when D acts
on arbitrary vector 7. Expressing D as —[+2P, it follows that: Dv = (—I+2P)v = —v+2P7v.
By the discussion above, each component of vector Pv is A where A is the average of all
components of vector 7. Therefore the i** component of the vector D7 is given by (—v; +2A)
which can be written as (A + (A — v;)) which is precisely the inversion about average.

Next consider the situation in figure 2, when this operation is applied to a vector with

each of the components, except one, having an amplitude equal to \/_CN where C' lies between

% and 1; the one component that is different has an amplitude of —v1 — CZ2.

The average A of all components is approximately equal to T% Since each of the (N —1)
components is approximately equal to average, they do not change significantly as a result
of the inversion about average. The one component that was negative, now becomes positive
and it’s magnitude increases by \2/—%

In the loop of step 2, first the amplitude in the selected state is inverted (this is a phase
rotation and hence a valid quantum mechanical operation). The the inversion about average
operation is carried out. This increases the amplitude in the selected state in each iteration by
2C/ V/N. Therefore as long as the magnitude of amplitude in the single state, i.e. V1 — C2, is

less than =, the increase in its magnitude is greater than ——. It immediately follows that

V2 V2N©
there exists a number M less than v/ N, such that in M repetitions of the loop in step 2, the
magnitude of the amplitude in the desired state will exceed % Therefore if the state of a

system is now measured, it will be in the state with probability greater than 0.5.
Here is no one practical realization of this algorithm. Anyway, you can find one in [3].
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