
JASS 2004 - Numerical simulation

Parallel Programming and Cache
Optimization for Finite Element Methods
- the Benefit of Space Filling Curves (SFC)

Markus Langlotz

July 5, 2004

1

Abstract

This paper shall show how the use of space filling curves (SFC) can
be used to improve the runtime properties of numerical algorithms.
The encouragement of SFC has several independent benefits, which
are pointed out in the following paper. Using SFCs for numerical
computations one can improve an algorithm concerning to the under-
lying computer architecture.
Furthermore they can be used to partition a problem domain into
parts, which can be processed in parallel on high performance com-
puters.

Section 1 describes some basics about computer architecture. The
center of interest is the memory hierarchy and its influence onto nu-
merical algorithms.
Section 2 pointes out how an implementation of numerical algorithms
using SFC can obtain better results concerning cache efficiency than
standard implementations. Based on the basic descriptions of a SFC
algorithm [?], further properties of the implementation of SFC are
shown. The full implementation is described in [?].
Section 3 focuses on parallelizing. First some standard partitioning
shemes will be mentioned and described shortly. Subsequent to this,
the SFC approach for partitioning a domain will be depicted. Both,
the SFC partitioning and the stack algorithm is going to be used to-
gether in the same implementation.

2

Contents

1 Computer architecture 4

2 Cache efficiency 8

2.1 Original approach without SFC 8
2.2 Stack architecture (SFC) 9

3 Parallelization 14

3.1 Requirements . 14
3.2 Partitioning with basic algorithms 15
3.3 Partitioning using space filling curves 15
3.4 Focus of research . 16

3

memory I/Odata

address

instructions

data

CPU

ALU

PC

Figure 1: computer architecture

1 Computer architecture

The development of computers already lasts for several centuries. But
still our most modern computers follow the architecture of John v.
Neumann. In his idea a computer consists of five building blocks.
They are

• an arithmetic-logic unit (ALU)

• a control unit (CU)

• a memory

• some form of input/output (I/O)

• and a bus.

From our point of view the use of this machine is most interesting.
As it is designed to process every possible computation, there has to
be a way to formalize its computation steps. These steps are called
algorithm and are stored using instructions and control structures in
the memory. In addition to that the input data and the data resulting
during the computation are stored within the memory. An overview
over the main parts is shown in figure 1 on page 4.
Let’s have a short look at the way one instruction is executed. The
program counter (PC) holds an address, which points to the position
in the memory storing the instruction to be processed next. After uti-
lizing the bus to load this instruction, the control unit can interprete
it. Beside the operational part of the instruction, which describes
the kind of the operation, the instruction also contains the operands.
These operands also have to be fetched from the memory. After gain-
ing all information needed, the ALU executes the operation and pro-
duces a result, which has to be stored and thereby again the memory
has to be accessed. Summarizing this procedure, it can be observed,
that in the worst case, it is necessary to access the memory three
times, while the central processing unit just processes one instruction.

4

Figure 2: development of cycle times

This wouldn’t be a reason to worry about, if the memory would be
fast enough to enable three accesses per instruction. Unfortunately
this wasn’t the case during the last 30 years. The CPU cycles were
even faster than the memory cycles. Furthermore the development of
memory and cpu speed evolves differently. As shown in figure 2 the
gap between the cycle times of CPU and memory has increased to a
factor greater than two hundred. Up to now, there is now sign, that
the gap can be closed by newer technologies in future.

Obviously the memory induces a slowdown of the computation of a
programm, in comparison to the optimal computation time. One can
easily assume, that each time the processor starts to execute an in-
struction it has to wait for hundreds of cycles until the operation code
and all operands are read from the memory. This would be true, if
modern engineers had not invented techniqus to close that gap. First
of all there are memory types with cycle times in the same order as the
CPU cycle times. But such memory types are expensive and small. As
the smallness is the main reason for the short access times, memory
cannot easily be enlarged.
For that reason a memory hierarchy was introduced. As shown in
figure 3 on page 6 there are 5 memory types, which differ in size and
speed. The main idea behind this hierarchy is, that one can store
data, which is used frequently in fast memory and data, which won’t
be important for a certain time, in slower but bigger memory. In real-

5

avaiable size

~1KB

16KB − 4MB

~1GB

~1TB

>>1TB

access time

~0.5ns

0.5 − 25ns

~80ns

~5ms

>>1sArchiv memory

Disk memory

Main memory

Cache

Registers

L2
L1

L3

Figure 3: memory hierarchy

ity, cache and registers hold copys of data and instructions, which are
stored in the main memory. The main memory stores running pro-
gramms and their data. Data on disks and archive memory is stored
in order to access them some time in the future. This hierarchy is
further extended by the different levels of a cache. Within a cache the
L1 (level one) cache is the smallest and fastest one providing the same
speed as the registers. The L2 cache is bigger but has, as the logical
drawback, higher access times. Some of the more modern processor
architecture even have a third cache level called L3 cache. All together
a modern computer provides up to 8 memory types, which differ in
size and speed.

We focus on the cache of a computer, as its utilization is from vast
importance for the runtime of numerical algorithms. As the cache size
is much smaller than the size of the main memory, only some rather
small parts of the data can be stored there. To decide, which data
is stored in the cache, the corresponding algorithms use the locality
properties of computer programs. On the one hand programs tend to
use variables, which were used once, serveral times after another. This
property is called temporal locality. On the other hand spatial locality
can be observed. Thereby one can exploit, that programs often access
memory next to memory locations, which were just accessed before.
Using this information, cache algorithms can be implemented, which
most often are able to deliver the requested data/instruction out of the
fast cache instead of accessing relativly slow main memory. It can be
verified, how successful a architecture achives this aim. By counting
the cache misses (memory access can’t be delivered from cache) and

6

cache hits one can calculate the cache hit rate.

hitrate =
ncachehits

ncachemisses + ncachehits
(1)

The hitrate is a measure for the cache efficiency of an algorithm. If this
rate exeedes 95%, the algorithm can be regarded as cache efficient. But
even with a value of 99% an algorithm still wastes hundreds of CPU
cycles every 100th instruction. The results of the following chapter
show, how it is possible to reach cache hit rates of > 99.99%!

7

2 Cache efficiency

This section first shows why the standard approach of accessing mem-
ory in numerical algorithms leads to terrible results concerning cache
efficiency. Subsequent to that, a new idea is introduced including new
ways of memory usage and access. The main idea of this architecture
is the usage of a set of stacks instead of memory fields. Stacks allow an
efficient access to the required data, while the algoritm is traversing
through the domain. The traversion path follows a Peano curve. In
order to use a consistent term the architecture subsequently is called
stack architecture.

2.1 Original approach without SFC

Figure 4: evaluation of the 5-point-stencil

To solve partial differential equations (PDE) the following steps
have to be done. First of all the PDE is discretized which leads to a
linear equation system (LES) like Au = b. To solve this, one can use

8

iterative LES solvers, as Jaccobi or Gauss-Seidel. Performing FDM in
the two dimensional case usally means to evaluate a 5-point stencil on
the field u. Imagine a two dimensional field as can be seen in figure 4.
To evaluate the node u5,4 one needs all neighbour elements. Thus the
nodes u5,3, u4,4, u5,4, u6,4 and u5,5 are needed. In the case of n = 5000
these elements are distributed within the memory. If the field is stored
linewise, the position of the elements are between 10005 and 20005.
This wouldn’t lead to a problem if all elements were stored in the cache
of the CPU. Unfortunalty the whole field would need about 200MB
and still the 3 accessed lines are to big too be completly stored in the
cache (120KB > L1 cache). An implementation, which only simulates
this data structure and the above described way of accessing it led to
the following results:

Architecture Pentium IV Xeon

elements 1, 25 ∗ 108

Cache size 512 KBytes (128 Bytes each
line)

L2 cache miss rate 15,0 %

Obviously the results are rather bad, hence every seventh usage
of the memory leads to a cache miss resulting in many wasted CPU
cycles. These results are even more interesting as the Xeon family has
a big cache size and so is optimized to achieve low cache miss rates.
The following section shows how to reach this.

2.2 Stack architecture (SFC)

As an introduction to this section it is strongly recommended to read
[?] first, as some previous knowledge is required. The general idea of
traversing the domain Ω using Peano curves leads to the stack archi-
tecture, which needs 3d stacks, where d is the number of dimensions
of the domain. The following part motivates the number of different
stacks. Computation within a cell of Ω requires an access to all edges
of the cell. As introduced one needs 2 stacks to store them. One for
each side of the curve. Experiments have shown that 2 stacks aren’t
sufficient in every case. Figure 5 shows one possible problem. The
yellow marked coarse node is stored on the (right side) stack when the
coarse cell in the center is left (mark 1). The brown marked node lies
on refinement level deeper then the yellwo one. While the algorithm
traverses the domain the brown one is stored on top of the stack (mark
2 & 3). When the coarse cell in the middle of the top row is accessed,
the yellow one is going to be read, but the brown one resides above it.

9

2

3

1

Figure 5: motivation for stack architecture

To solve this problem, each of the nodes has to be regarded seperat-
edly. A node chances the stack depending on number of accesses to
it. So after each access, a node is stored to another stack. In gen-
eral there are 5 stacks in the two dimensional case (left/right is not
taken into account). As shown in figure 6 on page 12 the nodes are
stored onto stacks corresponding to the number of already perofrmed
accesses. Hence a node is stored on stack 2 after it has been accessed
two times. E.g. this is the case for the red node in figure 6, when the
algorithm reaches the grey cell. The continuous access onto neigh-
boured cells can be seen in figures 6 to 8.
This concept can be enhanced by collecting similar stacks together.
Thereby not the number of accesses but the ”completeness” of a node
plays the crutial role. As it is easier to imagine the following example
is made for the 3 dimensional case. One should note that a node,
which isn’t located at the border is accessed 8 times in 3D. After a
node has been accessed 4 times it can be regarded as ”plane com-
plete”. This is because all cells on one side of the node have been
traversed. Hence we store this node on a so called plane- or 2D Stack.
Because of the same reason we store a node on the 1D Stack as soon
as it is ”line-complete”. This happens after the second and the sixth
access. If a node has been accessed 1,3,5 or 7 times is is stored on the
0D Stack. Finally after the last access a node is ”volume-complete”
and hence can be stored on the 3D stack.
For the same reasons, as mentioned in [?] one needs multiple stacks

10

for each dimensional completeness. For further information the reader
is advised to read [?].

Using the above described approach of 3d stacks to traverse through
Ω we have achieved the following results.

Architecture Pentium IV Xeon

elements 4 ∗ 108

Cache size 512 KBytes (128 Bytes each
line)

L2 cache miss rate 0,01 %

As can be seen easily, the results show an excellent improvement
in the relative number of L2 cache misses. How can this be explained
and what are the responsible properties of the space filling curves,
which lead to that improvement?
In order to find out the reason one has to concentrate on the con-
struction idea of space filling curves. As mentioned in [?] a space
filling curve always fills a full quadrat (two dimensional case) or a
cube (three dimensions). This leads to an always compact area cov-
ered by the curve. Furthermore the surface (border) of the traversed
part of Ω stays small compared to the number of nodes within its area.
The following rules can be obtained:

nodes per dimension on curve = n (2)

#dimensions = d (3)

distance between n1 and n2 = l (4)

distance in space = d(x, y) (5)

d(n1, n2) = O(l1/d) (6)

surface of curve = O(d(n1, n2)
d−1) (7)

= O(l
d−1

d) (8)

As can be seen in equation 8 the surface of a space filling curve with
length l tends to be small in comparision to l. It is known from
the beginning of this section, that the nodes on the surface of the
alredy traversed domain have been accessed at least once and at most
(max − 1) times (max = 2d). So the corresponding stacks can be
considered to be small. Therefore they can be held inside the main
memory completely. Only the 3D stack is large, as it stores all el-
ements, which were not used yet or which are finished. Hence this
stack has to be stored on the disk. But small stack sizes don’t lead in-
evitably to the cache efficiency mentioned before. Again looking onto
the figure sequence 6 to 8 one can see, that the stacks are oszillating
within a small bound. This narrow area can completely be held in the

11

21 3 40

Figure 6: image sequence 1/3

cache. Up to now, no exact measurement or formalization was done
to document this idea. Further work has to be done to achieve exact
theoretical knowledge on the practical results.

12

21 3 40

Figure 7: image sequence 2/3

21 3 40

Figure 8: image sequence 3/3

13

Figure 9: access on one node

3 Parallelization

One of the most frequently used approaches of parallelization within
numerics is the partitioning of a discretized domain Ω. Partitioning
can be regarded as the task to divide Ω into parts and to organize
communication between the processes, which work on these parts.
This section first briefly describes the requirements of a parallelization
approach with respect to determine the partitioning. The second part
describes algorithms, which produce the partitioning. The last section
shows how space filling curves can be used to find a partitioning, which
surpasses the traditional algorithms with respect to all requirements.

3.1 Requirements

As mentioned above, parallelization can be seen as partitioning of Ω.
As the partitioning plays an important role with respect to runtime
and communication efforts, it has to be chosen according to the the
following requirements. When using finite element methods (FEM) to
solve partial differential equations, many approaches store the infor-
mation in nodes, which lie on the vertices of the cells (elements). As
a node usually is part of several cells one has to access the node each
time when calculating within a neighbouring cell (see figure 9 on page
14). This leads to the first requirement. The number of nodes on all
borders has to be minimized. Reducing the number of nodes on the
border also implies a reduction of communication between two neigh-
bouring processes as all of the node values have to be sent through
the network.
Secondly the partitioning algorithm has to be capable to handle un-
regularly refined grids.

Usually the partitioned parts are computed on different processors.
In order to optimize the overall computation time, one has to organize
the partitioning in a way, that none of the processors has to wait for
others. In other words, the overall idle time should be as small as pos-
sible. If a homogenous network of machines is used, all the processors

14

can handle the same amount of workload. In that case, the partition-
ing has to assure that all domain parts approximately consist of the
same number of elements. This requirement is called load balancing.
To sum up a partitioning algorithm has to meet the following require-
ments:

• Minimize border size of the partitions,

• handle adaptivly unregular refined grids and

• assure load balancing.

3.2 Partitioning with basic algorithms

As the partitioning problem which optimizes all the above require-
ments is NP complete, one uses heuristics to find convenient solu-
tions. Many of the heuristic algorithms are graph based. Hence the
recursive spectral bisection uses a graph which represent the finite el-
ements. This graph is now divided using the Fiedler-Vektor. One can
read in [?] about the astonishing fact that the Fielder-Vektor contains
informations, which can be used for partitioning. Some other graph
based algorithms are Recursive Coordinate Bisection and Inertial Re-
cursive Bisection, which are named here to enable the reader to find
more informations concerning these approaches. Other approaches
like Scheduling use a slightly more implicite approach to solve the
partitioning problem. The Scheduling algorithm works as follows. If
one processor has finished its work, it starts to support others to do so.
If one processor often helps another one, he adds a part of the others
workload to its own. This leads to a fair distibution of workload, but
can also lead to big border sizes, as there is no one taking care for
that.

3.3 Partitioning using space filling curves

Partitioning a domain Ω using space filling curves is straight forward.
As SFCs map n dimensional areas into the one dimension of the curve.
The partitioning can be seen as a partitioning of a line into equally
sized parts. As this can be done easily, also a fair partitioning can be
achived with ease. Furthermore a SFC can handle adaptivly unreg-
ularly refined grids as can be seen in figure 10 on page 16. One has
to show, that the communication of the parts stays within acceptable
bounds. As mentioned in section 2.2 SFCs tend to stay compact and
have a small border. Hence also the last requirements are fullfilled.
Measurements and comparisons can be found in [?] They show that
the space filling curve approach leads to faster algorithms, less com-
munication effort due to small borders and to optimal load balancing.

15

Figure 10: SFC within adaptivly refined domain

3.4 Focus of research

At the moment the chair of Prof. Zenger is developing a FEM solver
which applies the approach of the stack architecture. The performance
results presented in this paper are based on an implementation of
Markus Pögl, which uses multi level solvers, hierachical bases, peano
curves etc. Right now we are implementing further techniques to
show that this approach not only works for Poisson equation on single
processors. Following techniques are going to be implemented during
this year:

• Solving fluid dynamic problems like Navier Stokes,

• parallelization including adaptivly repartitioning,

• more sophisticated algorithms to improve convergence speed,

• transferring the technique from 2D & 3D to n dimensions and

• refactoring of the framework in order to improve maintainability.

16

