
Chapter 9

Rice’s integrals – a method
for solving generalized
differences
Thomas Preu

Often in the analysis of algorithm and data structures we have the need
to estimate the asymptotic growth of differences and sequences defined by
recurrence equations. But often we don’t know the explicit representa-
tion of the solutions. Therefor we need methods, which we can establish
asymptotics without knowing the exact representation. Rice’s integral is
such a method. In this paper we will introduce basics in complex analysis
and develope the mathematic foundations needed in theoretical computer
science. The paper is based on the lecture ”Analysis 4” held by Prof. W.
Heise in 2003 at the TU München and an article by Flajolet et al. [FS95].

9.1 Basics of Complex Analysis

9.1.1 Complex Differentiability

In the whole of this paper, we will have to deal massivly with complex analysis. As
complex analysis is often seen as a discipline of pure mathematics, most people working
in computer science, even in theoretical computer science, have not heard much about
it. So I will give a rough introduction to it and present the needed theorems. It is
assumed that the reader has basic knowledge of real analysis, e.g., knows what a real
function is, what continuity and differentiablity means, and , what complex numbers
are.

First of all we consider a complex mapping on an open set E

f : E ⊂ C→ C, z = x+ yi 7→ f(z) = u(x, y) + iv(x, y) (9.1)

This mapping is said to be continous, if the correspondig 2-dimensional mapping

g : E′ ⊂ R
2 → R

2, (x, y) 7→ (u(x, y), v(x, y)) (9.2)

is continous in the sense of multidimensional real analysis.
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If g is differentiable at (x0, y0), we have the derivative

A :=

 
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

!

x=x0,y=y0

(9.3)

and A is a linear mapping with the property

∀(x, y) ∈ E′ : g(x, y) = g(x0, y0) +A ·
„
x− x0

y − y0

«

+B(x− x0, y − y0) (9.4)

where B is a mapping with B(0, 0) = (0, 0)T and lim
(x,y)→(0,0)

B(x,y)
|(x,y)| = (0, 0)T which, of

course, implies continuity at (0, 0)
As a linear mapping E ⊂ C→ C is in fact a complex multiplication, the natural way
to introduce complex derivatives, is trying to find a complex number f ′(z0), which
acts the same way as A in (9.4):

∀z ∈ E : f(z) = f(z0) + f ′(z0) · ((x− x0) + i(y − y0)) + b((x− x0) + i(y − y0)) (9.5)

where b is a complex mapping with b(0) = 0 and lim
z→0

b(z)
|z| = 0. If such a number f ′(z0)

exists, f is said to be complex differentiable at z0.
Now we compare the matrix-vector-multiplication with the product of two complex
numbers: „

a1,1 a1,2

a2,1 a2,2

«

·
„
x1

x2

«

=

„
a1,1x1 + a1,2x2

a2,1x1 + a2,2x2

«

(9.6)

(a1 + ia2)(x1 + ix2) = (a1x1 − a2x2) + i(a2x1 + a1x2) (9.7)

we get the correspondence a1,1 = a1 = a2,2 and a1,2 = −a2 = a2,1

From this, it is plausible that a real function R
2 → R

2 understood as a complex
function is complex differentiable, iff ux = vy and uy = −vx. These equations are
known as the Cauchy-Riemann Differential Equation (CRDE).
As a result, we have that every complex differentiable function is differentiable in a real
sense, but a real differentiable function is only complex differentiable, if the CRDEs
are satisfied. So complex differentiability is somewhat stronger.

Definition 9.1. A complex mapping f , as introduced in (9.1), is said to be differen-
tiable at a point z0 ∈ E with derivative f ′(z0), iff (9.5) holdes for some appropriate
b.

Definition 9.2. The complex mapping f is said to be holomorphic at a point z0 on
E, iff f is complex differentiable at any point of a neighbourhood F ⊂ E of z0, which
is more than just complex differentiable at z0.

Definition 9.3. The complex mapping f is said to be holomorphic on an open set
F ⊂ E, iff f is holomorphic at any point z0 ∈ F .

In fact, when evaluating complex derivatives, not many changes occur; e.g. (zn)′ =
nzn−1, (ez)′ = ez or (sin(z))′ = cos(z)

9.1.2 Integration

In real analysis we integrate over intervalls, where the integral is a limit of sums. These
sums take into account the values of the function and the length of the parts of the
discretisation of the intervall. The discretisation Z gets ”finer” in the sense, that the
longest part tends to 0:

Z b

a

f(x)dx = lim
n→∞,|Zn|→0

nX

k=0,xn,k∈[zn,k,zn,k+1]

f(xn,k)(zn,k+1 − zn,k) (9.8)
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where zn,0 = a < zn,1 < . . . < zn,n < zn,n+1 = b for every n
In some way, we walk along the intervall from a to b, picking some points, where
we examine the function closer, and get a number from this process. Of course, it
shouldn’t be important, whether we are faster or slower while “walking”. This is
expressed by the substitution formula:

bZ

a

g(γ(s))γ′(s)ds =

dZ

c

g(t)dt (9.9)

where γ : [a, b]→ [c, d] is piecewise differentable and monotonous and g : [c, d]→ R is
piecewise continous. In γ we have the information how fast we are on the intervall at
each point of the parametrisation.
In a similar way we can integrate “along” a piecewise differentiable curve γ : R →
C; t 7→ γ(t); we can think of C as R

2. In this situation γ is called an integration
path. An integral of a complex function is the sum of the integrals of the real and the
imaginary part, so for a complex function f we get1:

Definition 9.4. The integral of a complex function f along a curve γ is:
Z

γ

f(z)dz =

Z b

a

f(γ(t)) · γ′(t)dt =

Z b

a

R
`
f(γ(t)) · γ′(t)

´
dt+ i

Z b

a

I
`
f(γ(t)) · γ′(t)

´
dt

(9.10)

For example we have the curve γ : [0, 2π]→ C; t 7→ eit which is a circle of radius 1 and
center 0 and f(z) = 1

z
.

Z

γ

dz

z
=

Z 2π

0

1

eit
· ieitdt =

Z 2π

0

idt = 2πi (9.11)

Some properties of real integrals can be copied almost literarily:
The length of a path of integration is

Λ(γ) =

Z b

a

˛
˛γ′(t)

˛
˛ dt =

Z b

a

p

(Rγ′(t))2 + (Iγ′(t))2dt (9.12)

For a piecewise continous f : [a, b]→ C:
˛
˛
˛
˛

Z b

a

f(t)dt

˛
˛
˛
˛ ≤

Z b

a

|f(t)| dt (9.13)

For f , continous on the image of a path of integration γ and M the maximum absolute
value of f on that image, we have:

˛
˛
˛
˛

Z

γ

f(t)dt

˛
˛
˛
˛ ≤M · Λ(γ) (9.14)

So far we have always considered curves and not their images as domain of integration.
But the following result shows, that somehow only the domain is important. For
this purpose we call a surjective, piecewise continous differentiable, real function φ
a parameter transform, iff for all points of its domain, where φ is differentiable, the
derivative is greater than 0.

Theorem 9.1. If φ : [c, d] → [a, b] is a parameter transform and γ1 : [a, b] → C an
integration path, then γ2 = γ1 ◦ φ : [c, d] → C is also a path of integration and for a
function f continous on the image of γ1 we have:

Z

γ1

f(z)dz =

Z

γ2

f(z)dz (9.15)

1Note, that we integrate along a curve in the first place and not the image of the curve.
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Although the proof is simple, we won’t state it here. The essence of this theorem is,
that the speed, at which we follow the line defined by a curve, is not important for
the value of the integral – as long as we follow the line ”smooth” enough, i.e. we don’t
”jump” around and we don’t stay to long at one point.

Definition 9.5. For a continous function f on an open set E ⊂ C we call F : E → C

the antiderivative of f , if F is holomorphic on E and F ′ = f . f is said to have local
antiderivatives, if for each z0 ∈ E there exists a neighbourhood G ⊂ E of z0, so that
there exists a holomorphic F with F ′ = f on G.

9.1.3 Holomorphic functions and the Cauchy Integral The-
orem

Holomorphic functions do have many nice properties. The proofs are often sophisti-
cated and technical, so we will again omit them.

Definition 9.6. A complex function f is said to be analytic at a point z0 if there exists
a neighbourhood G of z0, for example an open circle, such that f has a powerseries
expansion, which converges for some radius R. f is said to be analytic on an open set,
if it is analytic on every point of this set.

Theorem 9.2. For a continous function f on a domain2 E the following statements
are equivalent:

1. f is holomorphic

2. f has local antiderivatives

3. f is differentiable in the real sense and obeys the CRDEs

4. f is analytic

Since powerseries can be differentiated without any loss in their convergent domain,
this shows, that holomorphic function are arbitrarily often differentiable – at least in
a local sense; but since we can cover domains with circles we can connect the domains
of definition of these derivatives and get one derivative for the whole domain of a
holomorphic function. This is an outstandig property of holomorphic functions: in
real analysis a function can be differentiable but doesn’t have to be for a second time;
in complex analysis a function, which is differentiable on an open set, is arbitrarily
often differentiable.
Since powerseries are more or less Taylor series, holomorphic functions are completly
defined by only one point – if you know all higher order derivatives at just one point.
Another interesting property similar to that is, when you know the function at count-
able many points, which cluster at one point, then the holomorphic functions is also
defined uniquely. All this has the consequence, that whenever we have a holomorphic
function on a certain domain, then possible holomorphic extensions are again unique
– so restrictions of functions to a domain which is too small for our purpose is no
problem because we just extend the function to wherever we want, at least if no poles
hinder us.

Theorem 9.3. Let E be a convex domain and Z ⊂ E a set of points without cluster
points. If f : E → C is continous and holomorphic on E \ Z then for every closed
(meaning γ(a) = γ(b)) path of integration γ : [a, b]→ C the following holds:

Z

γ

f(z)dz = 0 (9.16)

2a domain is a connected, open set; those, who have never heard of connectivity, can
imagine this as a set, in which from every point to every other point there exists a path –
despite this is called path connectivity and is stronger than sole connectivity, it is enough to
get an idea of it.
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This is the Cauchy integral theorem3 and is something like the fundametal theorem of
integral and differential calculus: if you have two paths from x to y you can put these
two together to form a closed path, by altering the direction of one of those paths;
so their integral is zero. Since the alternation means a change in sign4, this means
that the integrals along the two paths for each of them have the same value, and the
integral itself does only depend on the starting and end point of integration.
At least if the function is holomorphic “enough” and the domain is convex – the
later can be extend to so called simple connected domains, witch is roughly speaking
connected and “without holes”.

9.1.4 Cauchy integral formula and residue calculus

Next we will state the Cauchy integral formulas5 and formulate the residue theorem,
which will be the central tools used in solving Rice’s integrals.

Theorem 9.4. Let U be an open disc in a domain E with U ⊂ E6 and we denote a
positivly oriented boundary of U with ∂U 7. Let f : E → C be holomorphic, then the
following statement hold:

∀z ∈ U : f(z) =
1

2πi

Z

∂U

f(ζ)

ζ − z dζ (9.17)

∀z ∈ U : f (n)(z) =
n!

2πi

Z

∂U

f(ζ)

(ζ − z)n+1
dζ (9.18)

∀z ∈ E \ U : 0 =
1

2πi

Z

∂U

f(ζ)

ζ − z dζ (9.19)

There are some generalisations of the CIT and CIF for general paths (not only circles
and points can be encircled more than once). Their mathematical exact presentation
would need some unnecesary complicated definitions. The main result is however,
that the circle in the CIF can be deformated ”continously” arbitrarily as long as the
path doesn‘t cross the singularity z. We can even encircle z more than once, but the
integral will than be an integer multiple of integral, whose path does encircle z only
once, according to the number how often and in what direction z is encircled.
Untill now we had only considered polynomial singularities with the CIF. But the
concept of integrating around singularities can be extended.
As stated above every function that is holomorphic can be expressed as a powerseries.
There exists a generalisation of this concept, which is called Laurent series. Laurent
series have the form

∞X

n=−∞
an(z − z0)n (9.20)

It can be shown that under certain conditions f can be expressed within some disc
partialy containing E and whose boundary is in E entirely as a Laurent series. Here
f must be defined on a domain E for every point z0, for which a path in E exists that
encircles z0.
In the following we consider holomorphic functions f which have isolated singularities;
this means roughly speaking, that the domain of definition doesn’t have any holes
beside some points and these points do not cluster.

3further denoted with CIT
4this can easily be checked by considering the substition formula
5further denoted with CIF
6U indicates the closure of U in the standard topology on C
7a positivly oriented boundary of a disc is a path (this means a special curve and not a

set) starting from one point at the boundary then encircles the disc counterclockwise untill it
returns for the first time to the starting point – this means it is a closed path
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Definition 9.7. The coefficient at n = −1 of a Laurent series of a holomorphic
function f with isolated singularities of type (9.20) is called the residue at z0: Res

z0

(f) =

a−1

It can be shown8 that there exists an ε, such that a circle Uε(z0) with radius ε small
enough and center z0 has the property Uε(z0) \ {z0} ⊂ E and that

Res
z0

(f) =
1

2πi

Z

∂Uε(z0)

f(z)dz (9.21)

Taking into account the CIT this yields the residue theorem9:

Theorem 9.5. Let E be an open set and U an open disc with E ⊂ U . Let, for some
n ∈ N0, f be holomorphic on E \ {z1, . . . , zn}. Then

1

2πi

Z

∂U

f(z)dz =
nX

k=0

Res
zk

(f) (9.22)

This is an extension of the CIT. It can even be extended to the case, where U is not
a circle in U and even if U is not bounded, as long as the singularities are isolated in
the encircled domain. This finishes our short introduction to complex analysis.

9.2 Other mathematical formulas

9.2.1 The Gamma function

The Gamma function is a generalisation of the factorial to complex numbers – one of
its definitions is

Γ(s) :=

Z ∞

0

e−tts−1dt (9.23)

It satisfies the relations:

∀n ∈ N0 : Γ(n) = (n− 1)! ∀x ∈ C \ −N0 : Γ(x+ 1) = xΓ(x) (9.24)

A direct consequence is:
nY

i=0

(s− i) =
Γ(s+ 1)

Γ(s− n)
(9.25)

The Gamma function is holomorphic on its domain C \ −N0; at the negativ integers
it diverges.
An estimate for the growth of the Gamma function is the so called Stirling formula:

Γ(x) =
√

2πxx− 1
2 e−x

„

1 +O(
1

n
)

«

(9.26)

The following formula, which is a direct consequence of the Stirling formula is the
standard estimate:

Γ(n+ 1)

Γ(n+ 1− α)
= nα

„

1 +O(
|a|2
n

)

«

(9.27)

It can be shown that

lim
n→∞

 
nX

i=1

1

i
− ln(n)

!

=: γ ≈ 0.577 (9.28)

8in fact, this is a direct consequence of the structure of the Laurent series and the fact that
∀n ∈ Z \ {−1} :

R

γ zn = 0 if γ is a closed path
9again the proof is quiet obvious and the idea simple, if you are used to complex analysis,

but if exactly formulated very technical
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This γ is known as Eulers constant.
Using this, another result is:

Γ′(x)

Γ(x)
= −γ − 1

x
−

∞X

k=1

„
1

x+ k
− 1

k

«

(9.29)

The proofs of all the statements above are wonderful perls of mathematical analy-
sis. But as with all perls, you have to dive deep to find them, so the proofs are far
from trivial and we omit them all. The Gamma function does have many other nice
properties – but we won’t need them.

9.2.2 Zeta functions and Modified Bell Polynomials

The so called incomplete Hurwitz ζ function is:

ζn(r, β) =
n−1X

i=0

1

(i+ β)r
(9.30)

ζn(r, 1) defines the generalized harmonic numbers ζn(r) and their limit (n → ∞) is
the famous Riemann ζ function.
From (9.29) it follows, that

ζn+1(1, β) = ln(n)− Γ′(β)

Γ(β)
+O(

1

n
) (9.31)

The modified Bell polynomials Lm = Lm(x1, x2, . . . , xm) are defined as

exp

 ∞X

k=1

xk
tk

k

!

= 1 +

∞X

m=1

Lmt
m (9.32)

It is rather technical than difficult to proof that in general

Lm(x1, x2, . . .) =
X

1m1+2m2+...=m

1

m1!m2! . . .

“x1

1

”m1
“x2

2

”m2

. . . (9.33)

and to get an idea of them, we have

exp

 ∞X

k=1

xk
tk

k

!

= 1 + x1t+

„
x2

2
+
x2

1

2

«

t2+

„
x3

3
+
x1x2

2
+
x3

1

6

«

t3 +

„
x4

4
+
x1x3

3
+
x2

2

8
+
x2x

2
1

4
+
x4

1

24

«

t4 + . . . (9.34)

9.3 Motivation and Basic Integrals

First we will introduce generalized differences for a sequence {fk}k∈N0
:

∆fn = fn+1 − fn ∆nf0 =
nX

k=0

„
n
k

«

(−1)n−kfk = (−1)nDn [f ] (9.35)

The differences Dn arise often in the average case analysis of some data structures as
search trees or tries. As a naive bound we get:

|Dn [f ]| ≤ 2n max
0≤k≤n

|fn| (9.36)
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But for many sequences fn that come across in data structure analysis this bound
is way to rough and polynomial bounds can be found – this phenomenon is called
exponential cancelation.
In the analysis of recurrent sequences generating functions are often used to simplify
and solve the relations. For example the exponential generating is

f(z) =

∞X

n=0

fn
zn

n!
(9.37)

and Poisson generating function is defined by

f̂ (z) =
∞X

n=0

fne
−z z

n

n!
(9.38)

We consider the transform fn 7→ gn = Dn [f ]. Substitution in the exponetial generat-
ing function or the Poisson generating function respectively yields the equations

g(z) = ezf(−z) ĝ(z) = e−zf̂ (−z) (9.39)

So it can be supposed, that when these transforms induce drastical simplifications of
recurences or difference equations, high order differences as Dn may play a significant
role.
We assume in the following, that a holomorphic function φ(x) interpolates the values
of the sequence fn, which means ∀k ∈ N0 : fk = φ(k).

Lemma 9.1. Let φ be a holomorphic function in a domain that contains the half-line
[n0,∞[ and C is a positivly oriented closed path in the domain of φ, which encircles
[n0, n] and does not include any of the integers 0, 1, . . . , n0 − 1 nor a point, where φ is
not holomorphic. Then the following holds

nX

k=n0

„
n
k

«

(−1)kφ(k) =
(−1)n

2πi

Z

C
φ(s)

n!

s(s− 1) . . . (s− n)
ds (9.40)

Proof. We apply the residue theorem (9.22). Since the only points where the integrand
is not holomorphic are the integers n0, n0 + 1, . . . , n, we only have to consider these
integers. Let k be such an integer; the residues can be evaluated according to the CIF
(9.17). Then we have:

Res
s=k

φ(s)
n!

s(s− 1) . . . (s− n)
=

Res
s=k

1

s− k

„

φ(s)
n!

s(s− 1) . . . (s− k + 1)(s− k − 1) . . . (s− n)

«

= φ(k)
(−1)n−kn!

k!(n− k)!
(9.41)

Simple summation while taking the sign into account yields the proposition.

For the further discussion the definition of polynomial growth will be important:

Definition 9.8. A function φ in an unbounded domain Ω is said to have polynomial
growth, if for some r the formula |φ(s)| = O(|s|r) holds as s→∞ in Ω. r is called the
degree of φ

If the function in (9.40) is of polynomial growth in the half-plain R(s) > n0−ε for some
ε > 0 and n is sufficiently large, then we have for some n0 > c > max{n0 − ε, n0 − 1}
the representation

nX

k=n0

„
n
k

«

(−1)kφ(k) = − (−1)n

2πi

Z c+i∞

c−i∞
φ(s)

n!

s(s− 1) . . . (s− n)
ds (9.42)
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Take as contour of integration the path

γj :

»

−j, j +
1

2

–

→ C;

(

c+ ix −j ≤ x ≤ j
c+ je−2πi( 1

4
−x) j ≤ x ≤ j + 1

2

where j > n. This path is negatively oriented (so the sign changes) and we can apply
(9.40). Since for any allowed j (9.40) holds, we consider the limit j → ∞. The
first part of the path yields the integral in (9.42) and the second can be estimated as
O(|j|−n−1+r+1) using formula (9.14), since the integrand and therefor its maximum
has asymtotical growth O(|j|−n−1+r) and the length of the path is 2πj

2
. So if n is

sufficiently large the second part of the integral vanishes.

9.4 Integrals of Functions with Poles and Rep-
resentation of Sumes

9.4.1 Rational functions

Theorem 9.6. Let φ be a rational function holomorphic in a domain that contains
the half-line [n0,∞[. If n is big enough we have

nX

k=n0

„
n
k

«

(−1)kφ(k) = −(−1)n
X

s

Res
s

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

(9.43)

where the sum is taken over all poles of φ and over 0, 1, . . . , n0 − 1

Proof. First we use Lemma 9.1 and take as path of integration a circle of radius R big
enough to encircle all poles. When R → ∞ and n > r the integral on the right side
of (9.40) tends to 0 by a similar argument used for (9.42). Applying once again the
residue theorem (9.22), we find that the sum on the righthand side of (9.43) minus its
lefthand side is 0, which directly yields (9.43)

As a next step we try to express the residues. For this purpose we will need the
incomplete Hurwitz zeta function and the modified Bell polynomials introduced in
(9.30) and (9.33). As every rational function can be expressed as a linear combination
of terms of the form A(x− a)−r, where r ∈ N0, we only have to consider functions φ
of this type.

Lemma 9.2. When α ∈ C \ N0, then

In(α) = (−1)nn! Res
s=α

„
1

(s− α)r

1

s(s− 1) . . . (s− n)

«

(9.44)

has the following asymptotic

In(α) = −Γ(−α)nα (lnn)r−1

(r − 1)!

„

1 +O

„
1

lnn

««

(9.45)

In the following we use the symbol 〈φ(s)〉k,α to denote the kth coefficient in the Laurent
series at a certain point α ∈ C.
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Proof.

In(α) =− n!

fi

(s− α)r 1

(−s)(1− s) . . . (n− s)

fl

−1,α

=

− n!

fi
1

(−s)(1− s) . . . (n− s)

fl

r−1,α

=

− n!

fi
1

(−α− s)(1− α− s) . . . (n− α− s)

fl

r−1,0

=

− n!

fi

exp

 

− ln

 
nY

j=0

(j − α− s)
!!fl

r−1,0

=

− n!

fi

exp

 

−
nX

j=0

ln(j − α− s)
!fl

r−1,0

(9.46)

Since we have ln(j − α− x) = ln
“

(j − α)
“

1 + −x
j−α

””

= ln(j − α) + ln
“

1 + −x
j−α

”

, we

can apply the series expansion ln(1 + x) =
∞P

m=1

(−1)m+1 xm

m
to get

= −n! exp

 

−
nX

j=0

ln(j − α)

!fi

exp

 
nX

j=0

 ∞X

m=1

1

m

„
s

j − α

«m
!!fl

r−1,0

=

− n!
1

(−α)(1 − α) . . . (n− α)

fi

exp

 ∞X

m=1

 
nX

j=0

1

(j − α)m

sm

m

!!fl

r−1,0

(9.30)
=

− n!
1

(−α)(1 − α) . . . (n− α)

fi

exp

 ∞X

m=1

ζn+1(m,−α)
sm

m

!fl

r−1,0

(9.33)
=

− Γ(n+ 1)Γ(−α)

Γ(n + 1 − α)
Lr-1(ζn+1(1,−α), ζn+1(2,−α), . . . ζn+1(r − 1,−α))

(9.27)
=

− Γ(n+ 1)Γ(−α)

Γ(n+ 1− α)
Lr-1(lnn− Γ′(−α)

Γ(−α)
+O(1/n), ζn+1(2,−α), . . . ζn+1(r− 1,−α)) =

(9.47)

Since the incomplete Hurwitz zeta function fullfills ζn(r, β) = O(1) for n → ∞ and
r ∈ N \ {1} and since beside the first coefficients of the modified Bell polynomials Lm

all coefficent are of degree smaller than m all other coefficient can be neglected.

= −Γ(n+ 1)Γ(−α)

Γ(n+ 1− α)

1

(r − 1)!
(lnn− Γ′(−α)

Γ(−α)
+O(1/n))r−1 =

− Γ(n + 1)Γ(−α)

Γ(n + 1 − α)

(lnn)r−1

(r − 1)!
·
„

1 +O

„
1

lnn

««
(9.31)
=

− Γ(−α)nα

„

1−O
„

1

n

««
(lnn)r−1

(r − 1)!
·
„

1 +O

„
1

lnn

««

=

− Γ(−α)nα (lnn)r−1

(r − 1)!
·
„

1 +O

„
1

lnn

««

(9.48)

As a first example we analyze for an m ∈ N the asymtotic growth of the sum

Sn(m) =
nX

k=1

„
n
k

«
(−1)k

km
(9.49)
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Here we can use the function φ(s) = 1
sm

to interpolate the sequence and we set n0 = 1.
We have only one pole not in {n0, n0 +1, . . . , n}, that is 0, which is of the order m+1.
We have to modify our calculations yielding (9.2), since the pole is in N0:

Sn(m) = −Res
s=0

„
1

sm+1

n

s− n
n− 1

s− n + 1
. . .

2

s+ 2

1

s+ 1

«

=

−Res
s=0

„
1

sm+1

““

1 − s

1

”“

1 − s

2

”

. . .
“

1− s

n

””−1
«

=

−
fi““

1− s

1

”“

1− s

2

”

. . .
“

1 − s

n

””−1
fl

m,0

(9.50)

Similar to the calculations taken out in (9.46) and (9.47) with the generalized harmonic
numbers ζn(k) this is

−
fi

exp

 ∞X

k=1

ζn(k)
sk

k

!fl

m,0

(9.51)

Now we can use once again the modified Bell polynomials and the facts, that ζn(k) =
ζ(k) +O

`
1

nk−1

´
for k ≥ 2 and ζn(1) = ln(n) + γ +O(1/n), which follows from (9.31)

with β = 1 and Γ′(1) = γΓ(1) to get:

− Sn(m) =
X

1m1+2m2+...=m

1

m1!m2! . . .

„
ζn(1)

1

«m1
„
ζn(2)

2

«m2
„
ζn(3)

3

«m3

. . . =

„

1 +O

„
1

n

««
X

1m1+2m2+...=m

1

m1!m2! . . .
·

„

ln(n) + γ +O

„
1

n

««m1
„
ζ(2)

2

«m2
„
ζ(3)

3

«m3

. . . (9.52)

Since the ζ(k) are constants we have for a polynomial Pm of degree m the asymtotics

−Sn(m) = Pm(ln(n)) +O

„
(ln(n))m

n

«

(9.53)

Using the values of the ζ function, we get for the first values of m

−Sn(1) = ln(n) + γ +O

„
1

n

«

(9.54)

−Sn(2) =
1

2
(ln(n))2 + γ ln(n) +

γ

2
+
π2

12
+O

„
ln(n)

n

«

(9.55)

Moreover for m = 1 we get the exact result

nX

k=1

„
n
k

«
(−1)k−1

k
= −Sn(1) = ζn(1) (9.56)

The above asymptotic equation can be generalized for m 6∈ N, as we will see later.
Another example is the sequence

Tn =
nX

k=0

„
n
k

«
(−1)k

k2 + 1
(9.57)

This sequence obeys the recurrence

T0 = 1 T1 =
1

2
Tn =

n

n2 + 1
((2n − 1)Tn−1 − (n− 1)Tn−2) (9.58)
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which seams hard to solve or even estimate by conventional methods.
Since the sequence underlaying this differences can be interpolated by φ(s) = (1 +
s2)−1 = 1

s−i
+ 1

s+i
, this allows us to directly applay (9.2) using trigonometric identities

and the fact that |Γ(z)| = |Γ(z)| to get

Γ(−i)ni

„

1 +O

„
1

n

««

+ Γ(i)n−i

„

1 +O

„
1

n

««

=

(Γ(−i)ei ln(n) + Γ(i)e−i ln(n))

„

1 +O

„
1

n

««

= ρ · cos(ln(n) + θ) + o(1) (9.59)

for some θ and ρ = 2 |Γ(i)| = 2
p
π/ sinh(π) ≈ 1.04313.

This example shows, that complex poles introduce periodic behavior in the asymtotics
of a sequence.

9.4.2 Meromorphic functions

Meromorphic functions are generalisations of rational function. Meromorphic func-
tions are holomorphic on an certain domain except isolated singularities.

Theorem 9.7. Let φ be a function holomorphic in a domain that contains the half-line
[n0,∞[. If n is big enough we have

1. If φ is meromorphic on C and of polynomial growth, then

nX

k=n0

„
n
k

«

(−1)kφ(k) = −(−1)n
X

s

Res
s

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

(9.60)

where the sum is taken over all poles of φ and over 0, 1, . . . , n0 − 1

2. If φ is meromorphic on the half-plane defined by R(s) ≥ d for some d < n0 and
of polynomial growth in this set, then

nX

k=n0

„
n
k

«

(−1)kφ(k) = −(−1)n
X

s

Res
s

„

φ(s)
n!

s(s− 1) . . . (s− n)

«

+O(nd)

(9.61)
where the sum is taken over all poles but n0, n0 + 1, . . . , n

Proof. Since in both cases the function is meromorphic, the number of poles are count-
able. So in the first case we can find positively oriented, concentric circles γj whose
radii tend to ∞ and do not come across any pole. In the second case we can find for
any ε > 0 a d < d′ < d + ε, such that the pathes defined by [d′ − iRj , d

′ + iRj ] and
the half circle with center d′ and radius Rj don’t cross a pole and Rj tends to infinity.
Since d′ is arbitrarily close to d, we can assume d = d′. Of course, if the theorem
is used in practice, other types of paths can be used, when they have the essential
properties stated and used here.
Now we integrate along these curves and get using the residue theorem similar to
theorem 9.6 the results above. Since φ is of polynomial growth10 we can use the
arguments at (9.42) to get the asymtotics of the integrals over the ”infinite” paths.
In the first case we get 0 for n big enough to overwhelm the polynomial growth. In
the second case the O(nd) comes from the integral along the parallel to the imaginary

10in fact, it is only necessary to have polynomial growth on the union of the paths of
integration – so we don’t have to bother about poles or even infinitly many poles on our
compact set, because we just circumnavigate them; in the second case the polynomial growth
is even only needed beside a compact set, because the path of integration is not allowed to
cross a pole and then holomorphic functions do attain their maximum on a compact set, so
they can be estimated by a constant, which is trivially of polynomial growth
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axes, as this argument illustrates (It’s not a proof – it’s just a plausibility argument;
we asume |φ(s)| = O(|s|r) for an integer r):

˛
˛
˛
˛

(−1)n

2πi

Z d+i∞

d−i∞
φ(s)

n!

s(s− 1) . . . (s− n)
ds

˛
˛
˛
˛

(9.13)

≤

1

2π

Z d+i∞

d−i∞

˛
˛
˛
˛φ(s)

n!

s(s− 1) . . . (s− n)

˛
˛
˛
˛ ds ≤

1

2π

Z d+i∞

d−i∞
|s|r

˛
˛
˛
˛

n!

s(s− 1) . . . (s− n)

˛
˛
˛
˛
ds =

1

2π

Z d+i∞

d−i∞

|s|r
|s(s− 1) . . . (s− r + 1) · (s− r)(s− r − 1)| |(n(n− 1) . . . (n − d+ 1))|

˛
˛
˛
˛

(n − d)(n− d− 1) . . . (r + 2− d)
(n − s)(n− s− 1) . . . (r + 2− s)

˛
˛
˛
˛ |(r + 2− d)(r + 1 − d)(r − d) . . . 2 · 1|−1 ds ≤

O(nd)

Z d+i∞

d−i∞

1

|s|2
ds = O(nd) (9.62)

This rough approximation holds for r + 1 − d < 0. For the other case, this argument
is not applicable, although I think, that O(nd) holds even in this case.

As our next example we want to analyze the recurrence relation

fn = an + 2

nX

k=0

„
n
k

«
1

2n
fk (9.63)

Further we will assume that a0 = a1 = 0; this is without loss of generality. Then we
use exponential generating function introduced in (9.37) to get

f(z) =

∞X

n=0

fn
zn

n!
=

∞X

n=0

 

an + 2

nX

k=0

1

2n

„
n
k

«

fk

!

zn

n!
=

∞X

n=0

an
zn

n!
+

∞X

n=0

 

2
nX

k=0

1

2n

„
n
k

«

fk
zn

n!

!

=

a(z) + 2
∞X

n=0

 
nX

k=0

1

2n−k(n− k)!
fk

2kk!
zk+(n−k)

!

=

a(z) + 2

 ∞X

n=0

1

2n

zn

n!

! ∞X

n=0

fn

n!

“z

2

”n
!

= a(z) + 2ez/2f
“z

2

”

(9.64)

This easily translates into the Poisson generating function via multiplication the whole
equation by e−z to get

f̂ (z) = â(z) + 2f̂
“z

2

”

(9.65)

so for the coefficients f̂n = n!〈f̂ (z)〉n,0 we have

f̂n = ân + 2
1

2n
f̂n ⇒ f̂n =

ân

1− 21−n
(9.66)

Since the equality

fn =

nX

k=0

„
n
k

«

f̂n (9.67)

holds, we get the identity respecting a0 = a1 = 0 and hence â0 = â1 = 0

fn =
nX

k=0

„
n
k

«
âk

1 − 21−k
=

nX

k=2

„
n
k

«
âk

1− 21−k
(9.68)
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To proof (9.67) we first show:

f̂n = n!〈f̂ 〉n,0 = n!

fi ∞X

n=0

fne
−z z

n

n!

fl

n,0

= n!

fi ∞X

n=0

fn

∞X

k=0

(−1)k z
k

k!

zn

n!

fl

n,0

=

n!

fi ∞X

i=0

iX

j=0

(−1)j 1

j!
fi−j

zjzi−j

(i − j)!

fl

n,0

= n!

fi ∞X

n=0

iX

k=0

1

k!

1

n − k! (−1)kfn−kz
n

fl

n,0

=

(−1)n

fi ∞X

n=0

iX

k=0

n!

k!(n− k)! (−1)kfkz
n

fl

n,0

= (−1)n
iX

k=0

„
n
k

«

(−1)kfk (9.69)

Next we examine the righthand side of (9.67):

nX

k=0

„
n
k

«

f̂k =

nX

k=0

„
n
k

«

(−1)n
kX

j=0

„
n
j

«

(−1)jfj =

nX

l=0

nX

m=l

(−1)l+m

„
n
m

«„
m
l

«

fl

(9.70)

Since we want this sum to be fn, we have to show, that the inner sum is δl,n
11

nX

m=l

(−1)l+m

„
n
m

«„
m
l

«

=

nX

m=l

(−1)l+m n!

m!(n−m)!

m!

l!(l −m)!
=

nX

m=l

(−1)l+m n!

(n−m)!(l −m)!l!
=
n!

l!

nX

m=l

(−1)l+m 1

(n−m)!(l −m)!
=

n!

l!

n−lX

k=0

(−1)2l+k 1

(n − l − k)!k! =
n!

l!(n− l)!
n−lX

k=0

(−1)k (n− l)!
(n− l − k)!k! =

„
n
l

« n−lX

k=0

„
n − l
k

«

(−1)k(1)n−l−k =

„
n
l

«

(1 + (−1))n−l =

„
n
l

«

δl,n = δl,n (9.71)

Since (9.63) appears in the analysis of tries, the asymptotics of

Un =
nX

k=2

„
n
k

«
âk

1 − 21−k
(9.72)

are of great interest. The âk are usualy simple; for n ≥ 2 we get for the an = n − 1,
which appears taking a closer look to tries, ân = (−1)n. So we can apply theorem 9.7
with fk = (2k−1 − 1)−1. We have infinitly many poles at χk = 1 + 2πik

ln 2
.

We choose as path of integration circles centered at the origin, that avoid the poles
and let the radius tend to ∞. The whole analysis is carried out in Knuth’s ”Art of
computer programming”; we don’t carry it out here, but the result is:

Un =
n

ln 2

0

@ln(n) + γ − 1 − ln 2

2
+

X

k∈Z\{0}
Γ

„

−1− 2πik

ln 2

«

e2πik ln(n)/ ln 2

1

A+O(1)

(9.73)
Since the Γ function decreases rapidly along the imaginary axes the effects of the sum
can almost be neglected and we get the simplyfied asymptotic

n log2(n) + nP (log2(n)) +O(1) (9.74)

More generally regular spaced poles introduce disturbances, which asymptoticaly be-
have like Fourier series in ln(n), as seen her with P .

11This is the widly used Dirac δ symbol
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Another example is the sum Vn =
n−1P

k=1

„
n
k

«

Bk
2k−1

, which arises in the analysis of

Patricia tries. Since Bk = 0 for k ∈ 2N + 1, the sign is not necessary, and using
Bk = −kζ(1− k) for k ∈ 2N ∪ {1}, we have to analyze the integral

Vn =
(−1)n

2πi

Z 1/2+i∞

1/2−i∞

n!

(s− 1)(s− 2) . . . (s− n)

ζ(1− s)
2s − 1

ds (9.75)

The path of integration is the infinite rectangle from 1
2
−∞ to 1

2
+∞ and from n− 3

4
+∞

to n − 3
4
−∞; but it can be shown that the integral of the second path is identical

0 for each n and so the rectangle can be extended to ∞ therefor is a variant of the
second part of theorem 9.7, where the residues are not yet evaluated.
Now we have to consider the double pole at 0 (from the ζ function and from (2s−1)−1)
and all the simple poles at χk = 2πik/ ln(2), which yields analog to the example befor

Vn =
ln(n)

ln(2)
− 1

2
− 1

ln(2)

X

k∈Z\{0}
ζ(1 − χk)Γ(1− χk)e2πik ln(n)/ ln(2) +O(1) (9.76)

There are also some other examples, where Rice’s integrals can be used succesfully;
for example digital trees or quad trees used for multidimensional searching.
In the last example the extrapolating function was just given to us, but you can
imagine that this would otherwise be a difficult task – especially with such not everyday
occuring numbers as the Bernoulli numbers. If we have coefficients which are sums or
products of other sequence αk and we can interpolate the elements of this sequence
by α(s), then we can use

An =

nY

k=1

αk ⇒ A(s) =

∞Y

k=1

α(k)

α(k + s)
An =

nX

k=1

αk ⇒ A(s) =

∞X

k=1

(α(k)−α(k+s))

(9.77)

9.4.3 Functions with Algebraic and Logarithmic Singular-
ities

Now we turn to general algebraic and logarithmic functions. The problem with these
function is that they can not to defined on C, even not with some pointwise exceptions,
but only with some uncountable exceptions. For example the complex extension of
the logarithm and the root are defined on C \ ]−∞, 0]12. For this reason we can not
simply integrate around the points, where the functions are not defined, because every
circle would be “slashed”, but we have to use the so called Hankel contours to get our
integration done.
Because of the difficulties that arise with this class of functions, we will only consider
examples; but the first in more detail. Since we are familiar with the sequence 1

km

from (9.49), where m was an integer, we try to generalise this to arbitrary λ, as we
indicated before.

Theorem 9.8. For any nonintegral λ, the sum

Sn(λ) =

nX

k=1

„
n
k

«

(−1)kk−λ (9.78)

has an asymptotic expansion in descending powers of ln(n) of the form

−Sn(λ) = (ln(n))λ
∞X

j=0

(−1)j Γ(j)(1)

j!Γ(1 + λ− j)
1

(ln(n))j
(9.79)

12People having done some complex analysis know, that there are some means to make this
restriction a little bit more flexible, but you will never get rid of a malicious slash, which cuts
into the complex plane
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Proof. As seen in (9.50) we can represent the sum as an integral in an analoge way

Sn(λ) =
1

2πi

Z

C
ωn(s)

ds

sλ+1
with ωn(s) =

““

1 − s

1

”“

1 − s

2

”

. . .
“

1− s

n

””−1

(9.80)

Here C may be the vertical line R(s) = 1
2

as in (9.42). Despite all, these integrals
would be hard to evaluate; since we are only interested to encircle the poles (here
only 1, 2, . . . , n) we can deformate the path of integration as we like unless we don’t
encounter any new pole or the slash. For this reason we introduce the Hankel contour:

C = C1 + C2 + C3 + C4

C1 =



s

˛
˛
˛
˛ |s| = R ∧

„

|I(s)| ≥ 1

ln(n)
∨R(s) > 0

«ff

C2 =



s

˛
˛
˛
˛s =

i − t
ln(n)

∧ t ≥ 0 ∧ |s| ≤ R
ff

C3 =



s

˛
˛
˛
˛s =

eθi

ln(n)
∧ θ ∈

h

−π
2
,
π

2

iff

C4 =



s

˛
˛
˛
˛s =

−i− t
ln(n)

∧ t ≥ 0 ∧ |s| ≤ R
ff

This is a circle of radius R > n around the origin, that circumvents the slash by leaving
some space around it; but as n increases the slash is left less space, so that if n tends
to ∞ any point in the domain of s−λ will be encircled.
Now we split the integral in three parts Sn(λ) = J1 + J2 + J3; we will see that for the
asymptotic J1 and J2 can be neglected.

1. Let J1 be the part, that belongs to the outer “circle” C1. Of course s−λ−1 is of
polynomial growth, so we can once more use our estimate for polynomial growth,
to see that J1 is O(R−n−λ) and in the end, when R→∞, we get J1 = 0

2. Now we will estimate the parts of C2 and C4 with R(s) < − 1√
ln(n)

=: −t0. For

simplification, we forget about the term s−λ−1 and asume we integrate along
the negative real axes till we reach −t013. This simplifications do not touch
the character of our estimate, but make it simpler. Additionaly, we mirror
everything on the imaginary axes, to get:

µ(n) :=

Z ∞

t0

dt

(1 + t
1
) . . . (1 + t

n
)

(9.81)

As next step we split the new path into the intervalls [t0, 1],
h

1, n1/3
i

and
h

n1/3,∞
i

, to get the integrals µ1(n), µ2(n) and µ3(n)

13We asume λ + 1 ≥ 0 and then it is quiet obvious, that we can neglect the powers of s

for the asymptotic analysis, because they would make the asymptotic only smaller; but for
example if λ are negative integers we get the Stirling numbers of second kind, which have
normaly exponential growth – our derivation can not be applayed in this case
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(a)

µ1(n) =

Z 1

t0

dt

(1 + t/1) . . . (1 + t/n)
=

Z 1

t0

n!dt

(1 + t)(2 + t) . . . (n + t)
=

Z 1

t0

Γ(n+ 1)Γ(t+ 1)

Γ(n+ t+ 1)
dt

(9.26)
=

Z 1

t0

√
2π(n+ 1)n+1−1/2e−n−1

√
2π(t+ 1)t+1−1/2e−t−1

√
2π(n+ t+ 1)n+t+1−1/2e−n−t−1

„

1 +O

„
1

n

««

dt ≤
Z 1

t0

√
2π(t+ 1)t+1−1/2

e(n+ t+ 1)t

„

1 +O

„
1

n

««

dt = O(1)

Z 1

t0

(t+ 1)t+1−1/2

(n+ t+ 1)t
dt =

O(1)

Z 1

t0

1

(n)t
dt (9.82)

The last few transformation can be carried out because t ∈ [t0, 1], so
is small compared to n and can be ignored or estimated by a constant
respectivly.

O(1)

Z 1

t0

1

(n)t
dt = O(1)

„−1 + n1−t0

n ln(n)

«

= O(e−t0 ln(n)+ln(ln(n)))

= O(e−1/2
√

ln(n)) (9.83)

(b) In the next part we use, that 1 ≤ t

µ2(n) =

Z n1/3

1

n!

(1 + t) . . . (n+ t)
dt =

Z n1/3

1

1 · 2 · 3

2 + t

4

3 + t
. . .

n

n− 1 + t

1

(1 + t)(n+ t)
dt ≤

Z n1/3

1

O(1)
1

(1 + t)(n+ t)
dt = O

„
ln(n1/3 + n)

n − 1

«

= O(n−2/3) (9.84)

(c) Similar to the estimates done in the formula above we get, for n large
enough

µ3(n) =

Z ∞

n1/3

1

(1 + t/1) . . . (1 + t/n)
dt ≤

Z ∞

n1/3

1

e(1/2)t
dt = O(e−(1/2)n1/3

) (9.85)

In the whole we have the result J2 = O(e(1/2)
√

ln(n)), so it is of smaller order
than any negativ power of ln(n)

3. Now we have to estimate J3; this is the integral along the contour of C2∪C3∪C4,
for which R(s) ≥ −t0, denoted in the following by C0.
Again we use Stirlings formula (9.26) to get the asymptotic:

ωn(s) = nsΓ(1− s)
„

1 +O

„
ln(n)

n

««

(9.86)

Since s is very small on C0 the part with O
“

ln(n)
n

”

can be estimated easily by

O(e(1/2)
√

ln(n)) and this yields

J3 = J0 +O(e(1/2)
√

ln(n)) with J0 =
1

2πi

Z

C0

nsΓ(1− s) ds

sλ+1
(9.87)



96 CHAPTER 9. RICE’S INTEGRALS

Now we use the transformation z = s ln(n) with D0 is the image under this
transform of C0 and have

J0 = (ln(n))λ 1

2πi

Z

D0

ezΓ

„

1 − z

ln(n)

«
dz

zλ+1
(9.88)

By the transform we get |z| = O(
p

ln(n)) on D0; this is the reason, we can
expand the Gamma function around 1 in a power series and after changing
summation and integration, we get

J0 = (ln(n))λ
∞X

m=0

(−1)m Γ(m)(1)

m!

1

(ln(n))m

1

2πi

Z

D0

ezzm−λ−1dz (9.89)

Now we have to estimate the remaining integrals; this can be done by the so
called Laplace method, where we extend the contour to −∞ to get L. We will
only present the result here:

1

2πi

Z

L
ezzm−λ−1dz =

1

Γ(1 −m+ λ)
(9.90)

Now, taking together all the parts, we have prooven the theorem.

As an application, we can examine the sum

Xn =
nX

k=1

„
n
k

«
(−1)k

√
1 + k2

(9.91)

We have the local behvior (s±i)−1/2 at the “problem points”, so we get an asymptotic
growth of

p
ln(n). Similar to (9.59) we have for some ρ and θ0

Xn = ρ
p

ln(n) cos(ln(n) + θ0) +O((ln(n))−1/2) (9.92)

Other examples and direct applications are

−Sn(−1/2) =
1

p
π ln(n)

− γ

2
p
π(ln(n))3

+O((ln(n))−5/2) (9.93)

−Sn(1/2) = 2

r

ln(n)

π
+

γ
p
π ln(n)

+O((ln(n))−3/2) (9.94)

In general the coefficients are rational expressions of terms as γ, Γ(−λ) and ζ(2), ζ(3),
. . .

For the rest of this part, we will only state some more examples, where the method of
Rice’s integrals (perhaps with use of the Hankel contour) can be applied succesfully.

Theorem 9.9. For the logarithmic differences we have the asymptotics

Yn =
nX

k=1

„
n
k

«

(−1)k ln(k) = ln(ln(n))+γ+
γ

ln(n)
− π2 + 6γ2

12(ln(n))2
+O

„
1

(ln(n))3

«

(9.95)

The method can also be used for entire functions, which have no poles at all (despite
the artificial ones introduced by the kernel . . . ). For example for

Zn =
nX

k=0

„
n
k

«
(−1)k

k!
(9.96)
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which obeys the recurrence Zn+2 = (2− 2/n)Zn+1 + (1− 1/n)Zn can be extrapolated
by the entire function 1/Γ(s), and after carrying out Rice’s method it reveals for some
constants c and θ

Zn = cn−1/4 sin(2n1/2 + θ) + o(n−1/4) (9.97)

We have seen many cases were heavy use of complex analysis can resolve the asymp-
totics of recurrences, generalized differences and sums. We summarize all this in the
table below.

Some types of singularities and the asymptotics they introduce
in the corresponding difference

singularity asymptotics

singularity of φ(s) at s0 = σ0 + iτ approximatly ns0 = nσ0eiτ0 ln(n)

simple pole: (s− s0)−1 −Γ(−s0)ns0

multiple pole: (s− s0)−r −Γ(−s0)ns0 (ln(n))r−1

(r−1)!

algebraic singularity: (s− s0)λ −Γ(−s0)ns0 (ln(n))−λ−1

Γ(−λ)

logarithmic singularity: (s− s0)λ(ln(s− s0))r −Γ(−s0)ns0 (ln(n))−λ−1

Γ(−λ) ln(ln(n))r

9.5 Mellin Transforms and Rice’s Integrals

The Mellin transform of a function and its inverse have the form

φ(z) =

Z ∞

0

tz−1f(t)dt f(t) =
1

2πi

Z c+i∞

c−i∞
t−zφ(z)dz (9.98)

If we take a closer look to the integral (9.42) and take into account the asymptotic of
ωn(s) (9.86)14 we get:

1

2πi

Z d+i∞

d−i∞
φ(s)

(−1)nn!

s(s− 1) . . . (s− n)
ds ≈ 1

2πi

Z d+i∞

d−i∞
φ(s)Γ(−s)nsds (9.99)

If we would change the sign of the variable and then compare the result with the
inverse Mellin transform we observe a definite analogy. Without stating it formally,
in cases, were we want to evaluate Rice’s integrals and we get stuck with it, it can
be worth a try to evaluate the corresponding inverse Mellin transform to get an idea
about the size of the asymptotics.
But the similarity can be stated formally as the Poisson-Mellin-Newton cycle.

Theorem 9.10. The coefficients of a Poisson generating function are expressible as
a Rice’s integral of a Mellin transform of the Poisson generating function.

{fn} Poisson GF−−−−−−−→ f̂(t) =
∞X

n=0

fne
−t t

n

n!

Mellin transform−−−−−−−−−−→ f̂∗(s) =

Z ∞

0

f̂ (t)ts−1dt
Rice’s integral−−−−−−−−→ {fn} (9.100)

Proof. We take a closer look to the Mellin transform and state a Newton series to have

f̂∗(s) =

Z ∞

0

f̂ (t)ts−1dt =

∞X

0

fn

n!

Z ∞

0

e−tts+n−1dt
(9.23)
=

Γ(s)

„

f0 + f1
s

1!
+ f2

s(s+ 1)

2!
+ . . .

«

(9.101)

14don’t forget about the additional s in the denominater, so we realy get Γ(−s) and not
Γ(1 − s), after changing sign
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By differencing15 we get to the following formula

fn =
nX

k=0

„
n
k

«

(−1)k f̂
∗(−s)

Γ(−s) (9.102)

But these differences are exactly of the Rice type, so we conclude the corresponding
equations

fn =
(−1)n

2πi

Z

C

 

f̂∗(s)

Γ(−s)
n!

s(s− 1) . . . (s− n)

!

ds (9.103)

f̂∗(s) =

Z ∞

0

 

e−t
∞X

n=0

fn
tn

n!

!

ts−1dt (9.104)

This are the relations, which were stated.

For example if we carry out the Mellin transform of the Poisson generating function
(9.65) we have f̂∗(s) = â∗(s)

1−21+s and from the formulas above we get the result

fn =

nX

k=0

„
n
k

«
â∗(−k)
Γ(k)

(−1)

1− 21−k
(9.105)

This is formally the same result as if we had carried out the Rice’s method.
There are some other examples as digital search trees, were the Poisson-Mellin-Newton
cycle can be applied. This is a hint that the formal result we get from the cycle can be
developed to an actual result by the Rice’s integrals. The cycle is also an explanation
for some other phenomena, but this would lead too far here.

9.6 Summary

Despite complex analysis seems to be part of pure mathematics, it can be applied
for finding asymptotics of solutions of difference equations and generalized differences,
which are needed in the analysis of algorithms. By the method of Rice’s integrals
we can tackle the average case analysis of tries, digital search trees, multidimensional
searching and other datastructures and algorithms of great practical use. In most
cases a detailed calculation of the asymptotics is in fact much too complex, but you
can get a first estimate of the growth by comparing the problem with the examples
outlined here and the table given at the end of the section befor the last.

15normaly we would differenciate, but here we have not a series in powers of s like sn but a
series in s(s + 1)(s + 2) . . .; since differencing leads to success with s(s− 1)(s− 2) . . ., we have
to play a little bit with the sign and get a result


