
Chapter 7

Greedy Algorithms for the
Shortest Common
Superstring Problem
Anton Nesterov

This paper is based on a article by A. Frieze and W.Szpankowski.
It presents some greedy algorithms that solve Shortest Common Super-
string Problem and their analysis in probabylistic framework. Also graph
algorithms for equivalent problems are presented.

Various versions of the Shortest common superstring (in short SCS) problem play
important role in data compression and DNA sequensing.
Problem Formulation. Given a collection of strings, say x1, x2, . . . , xn over an alphabet
Σ, find the shortest string z such that each of xi appears as substring (a consecutive
block) of z. In the DNA seqquencing another formulation of the problem may be of
even greater interest. We call it an approximate SCS and one asks for a superstring
that contains approximately (e.g in the Hamming distance sense) the original strings
as x1, x2, . . . , xn as substrings.
Our results are about some greedy approximations of the SCS but in a probabilistic
framefork. We prove that several greedy algorithms for the SCS problem are asymp-
totically optimal in the sence that thay produce a total overlap of SCS that differs
from the optimal (maximum) overlap by a quantity that is an order of magnutude
smaller than the leading term of the overlap.
We assume, that the strings are generated independently. We first consider the so-
called Bernoulli model in which symbols of the alphabet Σ are generating indepen-
dently within a string. Later we extends our results to other models: Markovian model
and Mixing Model, which is generalization of previous ones.

7.1 Definitions

Before presenting some results, we introduce some notation and a framefork for de-
scribing our algorithms.
Suppose x = x1x2 . . . x3 and y = y1y2 . . . y3 are strings over the same finite alphabet
Σ = (ω1, ω2, ..., ωM) where M is the size of the alphabet. We define their overlap

o(x, y) = max{j : yi = xr−j+i, 1 ≤ i ≤ j}.

63

64 CHAPTER 7. GREEDY ALGORITHMS FOR THE SCS PROBLEM

If x 6= y and k = o(x, y), then

x⊕ y = x1x2...yk+1yk+2...ys.

Let S be a set of all superstrings built over strings x1, .., xn. Then

Oopt
n =

nX

i=1

|x|i −min
z∈S
|z|.

We assume that the input strings are independently generated. We analyse the
Bernoully model, that is, each x = xj = x1x2...xi−1 is the same length l and and
xi is generated independently of x1, x2 . . . xi−1. Futhermore, P (xi = ωj) = pj > 0 for
1 ≤ j ≤M . Let

H =
mX

i=1

pi log pi

be the associated entropy for the Bernoully model (i.e., memoryless source).

7.2 Greedy algorithms

We study the following algorithm: its input is the strings x1, x2, .., xn over Σ. It
outputs a string z which is a superstring of the input.

7.3. RESULTS 65

Generic greedy algorithm.
1. I ← {x1, x2, ...xn};Ogr

n ← 0;
2. repeat
3. choose x, y ∈ I; z = x⊕ y
4. I ← (I \ {x, y})
5. Ogrn ← Ogr

n + o(x, y)
6. until |I| = 1
We consider two variants:
GREEDY. In Step 3 choose x 6= y in order to maximize o(x, y).
RGREEDY. In Step 3 x is the string z produced in the previous iteration, while y is
chosen in order to maximize o(x, y) = o(z, y). Our initial choice for x is x1. Thus in
RGREEDY we have one ”long” string z grows by addition of strings at the right-hand
end.

7.3 Results

Consider the SCS problem under the Bernoulli model. Let P =
PM

j=1 p
2
i . Then, with

high probability,

lim
n→∞

Oopt
n

n log n
=

1

H

lim
n→∞

Ogr
n

n log n
=

1

H

provided

|x| > − 4

logP
log n

for all 1 ≤ i ≤ n
In many applications, notably for data compression and the DNA recombination prob-
lem, the Bernoully model assumption is too unrealistic. Therefore, we extend this
theorem to the case when there is some dependency among symbols withing a string.
However we still assume that strings x1,x2, . . . , xn are statically independent. But we
restrict somewhat the dependency among symbols of each string, that is, we desribe
a main ideas of the mixing model.
Mixing Model. During the generation of string, each symbol depends on all previous
ones, but the farther the symbol the lesser the dependence on it.

7.4 Compression

The SCS can be used to compress strings. Indeed, instead of storing all strings of total
length nl we can store the SCS and n pointers indicating the beginning of an original
string plus length of all strings. However, this does not provide optimal compression
(which is known to be the entropy H). Show this, compute the compressionn ratio Cn

which is defined as the ratio of the number of bits needed to transmit the compression
code to the length of the original set of strings. It is easy to see that

Cn =
nl − (1/H)n log n+ n log2(nl − (1/H)n log n)

nl
where the first term of the numerator represents the length of the Shortest superstring
and the second term corresponds to the number of bits needed to encode the pointers.
Observe that when the length of a string l grows faster than log n, then Cn → 1,
that means no compression. When l = O(log n) some compression might take place.
The fact that SCS does not compress well is hardly surprising: in the construction of

66 CHAPTER 7. GREEDY ALGORITHMS FOR THE SCS PROBLEM

SCS we do not use all available redundancy of all strings but only that contained in
suffixes/preffixes of original strings.

7.5 Graph processes

In this section some graph algorithms, that correspond to GREEDY and RGREEDY
are presented. But before them,
First, we show that a pair i, j such that o(xi, xj) ≥ l/2 unlikely exists. Let ε denote
the event that there is no such pair. If l = K log n, then

P (¬ε) ≤ n(n− 1)

2

lX

k=l/2

P k = O(n2+(K log P)/2)) = o(1)

provided K ≥ −4/ log P .

7.5.1 RGREEDY

Consider a tree process that is equal to RGREEDY. Tree T be an infinite rooted M-
ary tree. M (size of an alphabet) edges leading down from each vertex will be labeled
with ω1, ω2, ...ωM . Thus, each vertex of depth d is identified with string of length d.
Also, label each vertex v with an integer v(v), number of strings that have the prefix
associated with this vertex.
We model the process of RGEEDY in the following way: particle Z starts at the root.
Then at a vertex v it moves to v’s ωj descendent with probability pj . The particle
stops at depth l/2. Let ω = sksk−1...s1be the lowest vertex on the path traversed that
has a nonzero v. This process models the computation of the largest suffix sksk−1...s1
of z which can be merged with a prefix of ai.
Then we model the deletion of at = a1a2...al/2 which has the prefix a1a2...ak. Let
ωi = a1a2...ai. Put v(ωi) = max{0, v(ωi)− 1} for 1 ≤ i ≤ l/2.
We iterate the above process n − 1 times.

7.5.2 GREEDY

Let D be the digraph ([n], A) with edge weights ωi,j = o(bi, aj) for i, j ∈ [n].
Sort the edges A into e1, e2, ..., eN , where N = n2, so that ω(ei) ≥ ω(ei+1);
SG ← ∅;
For i = 1 to N do: if SG∪{ei} contains in D neither a vertex of outdegree or indegree
at least 2 in SG, nor a directed cycle, then SG ← SG ∪ {ei}.
After termination SG contains n − 1 edges of a Hamilton path of D and corresponds
to superstring x1,x2, . . . , xn. The selection of an edge weight (bi, aj) corresponds to
overlaping xi to the left of xj .

