
Chapter 4

Compressed Suffix Arrays
Fabian Pache

In this work I present Compressed Suffix Arrays from A to Z, start-
ing with ordinary Suffix Arrays, covering Compressed Suffix Arrays as
described in [GV00] by Grossi and Vitter in-depth and finishing with an
outline of further improvements on Compressed Suffix Arrays developed
by K. Sadakane described in [Sad00]

4.1 Introduction

Merely having a certain text usually is not very satisfying. Before long one wants
to find the occurences of a smaller text within the larger text. This is called an
enumerative query. If we are interested only in the number of occurences it is an
counting query, while existential queries only return if there is at least one occurence
of the subtext. The terms larger text and smaller text can be interpreted very liberally.
While one of the obvious applications would be using something like this paper as
the larger text and for instance ‘Suffix Array’ as the smaller text there are other
applications. The human genome can be seen as a text, admittedly one with a rather
small alphabet, with any subsequence being a word or rather a pattern.

4.2 Suffix Arrays

The entire idea of a suffix array is to find a certain pattern P within a text T as fast
as possible, using as little additional space as possible. A suffix array SA for a text
T has as many entries as T has characters. Each entry i of the suffix array points
to the position of the i-smallest suffix of T . ‘Smallest suffix’ in this case refers to
the lexicographic ordering of all suffices of T . The order in turn is defined by the
alphabet Σ which contains all characters of T . Note that the suffix array is created
independant of the pattern P or the length of the pattern. Therefore a suffix array can
be used for multiple sequential queries using different patterns efficiently. Searching
only once for a single instance of a certain pattern can be done more efficiently using
other algorithms. Suffix arrays excel for multiple queries on a static text.

4.2.1 Algorithms

A suffix array in its basic form provides no more than the information where the
smallest suffix, second smallest suffix, third smallest suffix and so on starts. It does

39



40 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

not, in itself, provide a function that given a certain pattern, returns the position of
the pattern in the text.
However such an alogrithm is quickly outlined once one remembers that the sought
pattern is a subset the text. Each subset can in turn be seen as a prefix of a suffix.
This is where the suffix array comes in. Each and every suffix is referenced exactly
once by the corresponding suffix array. The suffix array contains all suffixes in their
lexicographic order therefore all entries of the suffix array pointing to occurences of
the pattern are in an unbroken sequence. Note that the entries in the suffix array are
sorted, the suffixes in turn usually are not.
Since the occurences of P are in sequence, finding all occurences of P boils down to
finding the first and the last occurence. Everything in between matches the pattern
as well.

4.2.2 Complexity

Since the only intrinsic function of a suffix array is lookup(i), returning the i-smallest
suffix in T by table lookup, time complexity for one operation is O(1). Space con-
sumption at this point is considered O(n) for both the text and the suffix array

4.3 Compressed Suffix Arrays

Considering that every text will be stored binary in a digital environment it seems
prudent to reduce the alphabet to binary as well. This also gives the highest possible
degree of freedom for pattern seeking operations. But it introduces a problem in the
size analysis of the text and its accompanying suffix array. A text of n characters
can be seen as a bit sequence of O(m) bits where m = n log2 n. But for each bit, a
entry in the suffix array is required and each entry must be able to adress one the
O(m) suffixes. Therefore the suffix array ‘grows’ to O(m · logm) bits as logm bits are
required to uniquely address one of m entries.
Grossi and Vitter pointed out a clever way of reducing the space requirement back to
O(m) without incuring a great speed penalty.

4.3.1 Compression of the Suffix Array

The basic idea of Grossi and Vitter is a recursive divide and conquer algorithm. For
each step of the recursion, half the entries of the suffix array are retained for the next
step while the other half are stored implicitly.
For now I will only describe the compression of the suffix array itself. The observant
reader might note that additional data is required to recover the implictly stored data.
Compression of this information is not trivial and will be covered later in section 4.3.2.

Remember that each suffix of T , and therefore each index of 1, . . . , m is refered to only
once in SA, the suffix array can be interpreted as a permutation. It follows that the
initial steps are applicable to all permutations. However section 4.3.2 will show that
it is not a generic method that can be applied to all permutations.
As mentioned before, we will compress the suffix array recursively. In each step of
the recursion we remove half the entries. The original suffix array is stored at level
k = 0 and the recursion is applied often enough so that the suffix array shrinks back
to m bits. Since the size of the initial suffix array SA0 was m entries of logm bits and
the number of bits for each entry is assumed constant Grossi and Vitter reduce the



4.3. COMPRESSED SUFFIX ARRAYS 41

number of explicitly stored entries. The number of levels K required therefore is

m

2K
· logm = m

logm = 2K

⇒
K = log logm

Each step of the recursion removes the odd values and keeps the even values of SAk.
For reasons discussed in section 4.3.2 the kept entries are divided by two in each step.
As a side effect of this division the new array SAk+1 again contains odd and even
values, so the recursion can be applied again.

How to recover the elements removed from SAk? For now, do not consider the required
space, only keep in mind that we want to retain constain time access for each level.
Therefore Grossi and Vitter introduce 3 new arrays on each level:

1. A bit vector Bk where

Bk[i] =

(

1 if SAk[i] is even

0 if SAk[i] is odd

2. A integer mapping ψk that is only required to be defined for all i where Bk[i] = 0
i.e the entry will not be kept in the recursion. The mapping j = ψk[i] is used
to find the entry SAk[j] that is one less than SAk[i]. In other words

SAk[i] = SAk[ψk(i)] + 1 iff Bk[i] = 0

3. A integer vector rankk where rankk[i] contains the number of 1s in B[0..i]. Like
ψ this array is not required to be defined for all entries, but only for those where
Bk[i] = 1 i.e the entry will be kept in the recursion. This array denotes the
position of the halfed entry in the next level.

Using these arrays, it is possible to recover SAk, using SAk+1, Bk, rankk and ψk as
follows:

SAk(i) =

(

2 · SAk+1[rankk[i]] iff Bk[i] = 1

2 · SAk+1[rankk[ψk[i]]] + 1 iff Bk[i] = 0

The evaluation of rankk in the second statement is possible since Bk[ψ[i]] = 1 iff
Bk[i] = 0

Grossi and Vitter combine the above formulas by filling the unneccessary entries
(rankk[i] for Bk[i] = 0 and ψk for Bk[i] = 1) with neutral operations and are therefore
able to put both cases in a single statement. While this is mathematically very so-
phisticated it is not a representation that makes the compression and reconstruction
scheme easier to understand. Considering modern CPU architectures that have a op-
erations pipeline that can reach its full potential primarily on code that is executed
without conditions a unified statement might have advantages in the implementation.
Please refer to the original work of Grossi and Vitter [GV00] for details.

This scheme is obviously applied only until the last level of the compression is reached.
At this point the values of SA are stored explicitly. Figure 4.1 shows a suffix array for
a binary text of length 32. Therefore there are levels k = 0 . . . dlog log 32e = 0 . . . 3.
Entries of rank and psi that are not required in the decompression are left blank.



42 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

T a b b a b b a b b a b b a b a a a b a b a b b a b b b a b b a #

SA0 15 16 31 13 17 19 28 10 7 4 1 21 24 32 14 30 12 18 27 9 6 3 20 23 29 11 26 8 5 2 22 25
B0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0
rank0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ψ0 2 14 15 18 23 28 30 31 7 8 10 13 16 17 21 27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SA1 8 14 5 2 12 16 7 15 6 9 3 10 13 4 1 11
B1 1 1 0 1 1 1 0 0 1 0 0 1 0 1 0 0
rank1 1 2 3 4 5 6 7 8
ψ1 9 1 6 12 14 2 4 5

1 2 3 4 5 6 7 8

SA2 4 7 1 6 8 3 5 2
B2 1 0 0 1 1 0 0 1
rank2 1 2 3 4
ψ2 5 8 1 4

1 2 3 4

SA3 2 3 4 1

Figure 4.1: Example of a compressed suffix array

4.3.2 Compression of the Auxiliary Arrays

Meanwhile we compressed the suffix array down to an acceptable size of m bits. On
the other hand we optained 3 new array of which only Bk can be stored in m bits.

rankk is larger by far, requiring m logm bits on each level. But there is no need to
store rankk explicitly as Guy Jacobson developed a method described in the thesis
paper for [Jac89] that can be based on Bk and requires only o(m) bits. The basic idea
is to store a two level dictionary that allows for constant access time in the cost model
used here.

Compression of ψk is more involved than compressing rankk. This is also the point
where the compression becomes inapplicable to ordinary permutations. For each level
k ∈ {0 . . . K − 1}we create 2k+1 list. Each of the lists is labeled with a unique binary
string of length k+ 1. For each entry ψk(i) with Bk(i) = 0 we determine the array to
store the entry in by looking up a substring t of T . t is defined as a prefix of a suffix in
T . The suffix is the one pointed to by the corresponding entry in SAk. The length of
the prefix is determined by the current level of recursion. t(i) = T ((2k ·SA[i]) . . . (2k ·
SA[i] + 2k − 1)). We append j = psik(i) to the list labeled t(i).

Continuing the example of figure 4.1 the lists are shown in figure 4.2. Note that each
of the lists is sorted and the maximum entry in Level k is m

2k
due to the division by

two of each entry in SA on each level of the recursion. Thus each of the 2k+1 lists can
be stored using a bit-vector of length m

2k
. The space requirement (without assisting

structures to optimize access) is therefore

2k+1 · m
2k

= O(m)

In order to access the compressed entry j = ψk(i) we have to determine the number
of 0s preceeding entry i in Bk as this is the index to the concatenated lists for level k.
This can be done by calculating h = i− rankk(i) using the technique based on [Jac89]
for rank outlined above. Finding the hth entry in the lexicographically ordered lists
is not described in detail in [GV00], but Grossi and Vitter claim constant access time
while using no more than O(m) bits for access optimzing structures



4.3. COMPRESSED SUFFIX ARRAYS 43

Level 0:

a list: 2 14 15 18 23 28 30 31

b list: 7 8 10 13 16 17 21 27

Level 1:

aa list:

ab list: 9

ba list: 1 6 12 14

bb list: 2 4 5

Level 2:

aaaa list: aaab list:

aaba list: aabb list:

abaa list: abab list:

abba list: abbb list: 5 8

baaa list: baab list:

baba list: 1 babb list: 4

bbaa list: bbab list:

bbba list: bbbb list:

Figure 4.2: Lists for ψ of figure 4.1

4.3.3 Complexity in general

On each level 0 ≤ k ≤ log logm we store Bk, rankk and the tables for psik in O(m)
bits. Therefore the entire structure can be stored in m log logm bits. Since time is
constant for each level SA(i) can be accessed in O(log logm).

4.3.4 Complexity optimization

With a small penalty in time requirement it is possible to further reduce the size of the
structure to O(m) bits. This is done by using only a subset of the levels. As long as the
size of the subset is constant the asymptotic size remains at O(m). Level k = log logm
is always stored explicitly. Of the other array it suffices to store 1 ≤ L < log logm levels
with minor modifications if these L levels are l(j) =

˚
j
L

log logm
ˇ

for 0 ≤ j ≤ L − 1.
To be able to reconstruct SAl(j+1) from SAl(j) it is neccessary modify Bl(j)(i) to be 1
only if SAl(j)(i) can be found in SAl(j+1)(rankl(j)(i)) instead of SAl(j)+1(rankl(j)(i)).
Note that rank needs not be modified if based solely on B.

ψl(j) still has to be defined for all entries where Bl(j) = 0, only now there are more
then half of the entries defined.

This modifactions enable us to use ψ to seek an entry of B = 1. The length of the
seeking process in turn determines the time requirements. The process is bounded by
longest possible sequence that has to be investigated. For a compressed suffix array
with L levels this sequence can be no longer than the sequence required to move from
level l(0) to l(1). Since all upper bound of sequences on the same level are of equal



44 CHAPTER 4. COMPRESSED SUFFIX ARRAYS

length, the longest seeking process is

L−1X

j=0

‖l(j)‖
‖l(j + 1)‖ =

L−1X

j=0

m

2l(j)

m

2l(j+1)

=
L−1X

j=0

2l(j+1)

2l(j)

=

L−1X

j=0

2
j+1
L

log log m

2
j
L

log log m

=

L−1X

j=0

(2log log m)
j+1
L

(2log log m)
j
L

=
“

2log log m
” 1
L

L−1X

j=0

1

= (logm)
1
L · L

= O(logε m) with ε =
1

L

4.4 Extensions of Compressed Suffix Arrays

Leaving the most general case of suffix arrays on binary texts, Sadakane proposes some
extensions of suffix arrays on human readable texts. For a more in-depth description
of Sadakanes datastructures and algorithms please refer to [Sad00]. Here I can only
give a short summary of his work and what it might imply.

4.4.1 Operations

While the original suffix array offers no more functionality than a mere lexicagraphic
ordering new operations are included.

Inverse Suffix Array A suffix array answers the question ‘At which position i does
the j-smallest suffix begin?’. Or more concise i = SA[j] To answer the inverse
question ‘What is the order j of the suffix starting at position i?’(j = SA−1[i])
we have no methods available up to now. Sadakane proposes a structure that
contains SA−1 that has the same time and space requirements as SA.

Searching There are algorithms that allow for searching operations in suffix arrays.
Sadakane augments the structure so that searching is an intrinsic feature of the
suffix array.

Decompression Using only the suffix array and the introduced extensions but with-
out the original text, recover a substring defined by first and last index in the
original text.

The last two functions are based on something Sadakane calls ‘the inverse of the array
of cumulative frequencies’. The abstract does not elaborate enough on the subject to
make a further description possible in this paper.

4.4.2 Complexity

Obviously Sadakane requires more memory to store the suffix array itself, but on the
other hand removes the need to store the text. His claim is that the entire search
index can be reduced to below the size of the original text for certain texts.



4.5. CONCLUSION 45

4.5 Conclusion

We started out with a large text and an even larger suffix array. In a first step Grossi
and Vitter drastically reduced the size of the suffix array without unreasonable penal-
ties in usability. Sadakane took this process even further and removed the neccessity
for storing the text, at the same time adding to the functionality of the datastructure.
Meanwhile we are storing neither the text nor the suffix arrays at all. All we retained
is a set of hints and literally pointers to both the text and the suffix array. This is a
fascinating evolution of a once seeming unchangable structure.



46 CHAPTER 4. COMPRESSED SUFFIX ARRAYS


