Chapter 11

Mellin transforms and
asymptotics: Harmonic
sums

llja Posov

This survey presents a unified and essentially self-contained approach
to the asymptotic analysis of a large class of sums that arise in combi-
natorial mathematics, discrete probabilistic models, and the average-case
analysis of algorithms. It relies on the Mellin transform, a close relative
of the integral transforms of Laplace and Fourier. The method applies to
harmonic sums that are superpositions of rather arbitrary ”harmonics” of
a common base function. Its principle is a precise correspondence between
individual terms in the asymptotic expansion of an original function and
singularities of the transformed function. Here no theorem is proved, and
even not every theorem is completely formulated. For precise presentation
of the theory reader is refered to the original paper.

We have to deal a lot with complex variable functions and I’ll remind you some basic
concepts about them. The first concept about complex variable functions is holomor-
phic function. Function is called holomorphic in some area, if it has complex derivative
in every point of this area.

The second concept is ‘analitic function’. Function is analitic in some point zg of
complex plane, if it can be expanded into Taylor series in this point, i.e. f(z) =
30 yen(z—20)" = co+e1(z — 20) +c2(2 — 20)*> + - - - . Similary, the function is called
analitic in an area, if it is analitic in every point of that area. One of the central
result of the complex variable function theory is the theorem, that every holomorphic
in some area function is analitic there. The converse statement holds too. We’ll use
the word ‘analitic’ a lot.

Except holomorphic functions there are meromorphic functions. Meromorphic in an
area function is a function, that is holomorphic there except discrete set of points that
are called poles. Discrete set means a set, every point of which can be isolated from
other points. For example, every finite set is discrete.

Consider a function f(z) = ﬁ It is analitic (and therefore holomorphic) in C\
{0,1}, but it is meromorphic in entire C with poles z =0 and z = 1.

The last concept is ‘open strip’. Open strip (a,b) = {z =z +iy | a <y < b} is a set
of points in a complex plane that looks like:

117



118 CHAPTER 11. MELLIN TRANSFORMS AND ASYMPTOTICS

AL

\

i

N

Open strip can be infinite, if a or b is infinity, and it’s obvious that (—oo,00) = C

11.1 Mellin transform definition

Robert Hjalmar Mellin (1854-1933) was Finnish mathematitian who studied the trans-
form which now bears his name and established its reciprocal properties. Now we are
finally going to learn what Mellin transform is.

Definition 11.1. Let f(z) be real function defined on (0,+00). Then its Mellin

transform is complex valued function that is defined by equality

x)z* 'dx

+oo
M [f(2): 8] = 1" (s) =/ /

—~

(=}

Of course, integral from definition usually converges not for all s € C, but it usually
converges for all s from some open strip, which in this case is called ‘fundamental’
strip.

Proposition 11.1. If f(z) = O(z") as x — 0 and f(z) = O(z") as © — +o0, then
the integral from Mellin transform definition converges for every s € (—u,—v) and
defines an analitic function in this strip.

Example 11.1. If f(z) = z*, then f(z) = O(z*) as * — 0 and f(z) = O(z") as
& — +o0. Proposition states that transform of f(x) (that is f*(s)) exists in the open
strip (—k, —k), but this strip is empty. In fact, transform of 2* simply doesn’t exist,
ie. fooo z*2*"1dz doesn’t converge for every k € R and s € C. One can simply check
it.

Now I present examples of functions that do have Mellin transforms.

Example 11.2. Let f(z) = l}rx. f(z) =0(1) =0(z°) as z — 0, and f(z) = O(z™})

as © — +oo. Now we can make use of proposition 11.1, here v = 0 and v = —1.
Proposition states, that in this case Mellin transform f*(s) = 0+°° 141rz z*"tdr exists
in the fundamental strip (0,1). The integral can be evaluated and it occurs, that
f7(s) = % But the equality holds only for s € (0, 1), for other s integral simply
doesn’t converge. By the way, function —=— by itself can be evaluated practically in

sin s
entire C, except, may be, integer points.

Example 11.3 (Gamma function). Now we consider the function f(z) = e™*.

f(z) = 0(1) = O(2°) as z — 0, and VM >0 f(z) = O(z™™) as x — +oo. Again,
after using the proposition 11.1 we obtain, that Mellin transform of f(z) exists in the
open strip (0, M) for every M > 0. It means, that the fundamental strip of this Mellin
transform is (0, +00). Now let’s evaluate the transform. f*(s) = f0+°° e "z .
This integral is called Gamma function and notation is I'(s). There is a well known
functional equation on gamma function which states that sI'(s) = I'(s + 1). This
equation allows us to evalute gamma function not only in the right half of complex
1

plane, but also in every other point of complex plane. For example, (—%)F(—§) =

I'(3) = /7, so I'(-3) = —2y/7. The problem is only with nonpositive integers.
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Statement 0I'(0) = I'(1) doesn’t allow us to evaluate gamma function in zero, it
demonstrates, that there is a pole of gamma function in zero. Every negative integer
is a pole of gamma function for the same reason.

Gamma function occurs frequently in Mellin transforms. But now we look on the last
example of Mellin transform before going to learn basic properties of Mellin transform.

Example 11.4 (Transform of step function).

Hiz) = 1,z €(0,1)
)0,z € (1,+00)

As in the previous example and for the same reasons, fundamental strip of the trans-

formed function is (0,+oc0). Here the transform can be simply evaluated. H*(s) =
0+°° H(z)z* 'de = fol e = é As in the all previous examples, we see that

transformed function is defined not only in the fundamental strip. Here fundamental

strip is (0, 400), but 2 may be evaluated in C \ {0}. Fundamental strip is only the

place where an integral converges.

If we had considered another step function H(z) = 1 — H(z), we would have obtained

the transform H (s) = —1 with fundamental strip (—oc,0).

11.2 Mellin transform basic properties

All basic properties of Mellin transform can be simply obtained by means of such
methods as integration by parts and change of variable. Here they are summarized in
a table.

f(x) f7(s) (o, B)
(1) z"f(z) [ (s+v) la—v,B—v)
@) f(a*) 152 (pa, p) p>0
®3) f(3) —f*(=s) (=B, —a)
(4)  f(px) == (s) (a, B) n>0
(5) LS (uea) (S, 2%) £7(s)
(6) f(z)logx =1 (s) (a, B)
(1) ©f(z) —sf*(s) (o, 8 =zl
®) &/ —(s=1f"(s=1) (o' +1,8 +1)
9 fy F®)t 3 (s+1)

The most interesting are the fourth and the fifth properties. The fourth one is
called ‘separation property’ and the fifth property is its generalisation. If the sum
> n Aef(prx) is finite, fifth property is obvious because of linearity of Mellin trans-
form. But if the sum is infinite, the fifth property holds only if function f(x) and series
>k 2—’; satisfy some additional conditions. Anyway, we’ll use this property in this pa-
per for infinite sums without paing attention to the problem. All studied functions
are good enough and fifth property holds for them.
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Example 11.5 (Zeta function). Here we’ll use the fifth property to introduce zeta
function. Consider the function

e—ac

1—e %

—3z

- —2
=e "4+e “+e

9(2) = o
The series converges for every z > 0. Now we apply the fifth property. \p =1, pp =k
and f(z) =e™", so

g (s) = (1+—+§+ >£m[e"”;s}=C(S)F(s)

Series ((s) = 7= + 3= + 3= + - -+ converges for every s € (1,+00). Fundamental strip
of the transform is (1, 4+00) too, and why it is so we’ll discuss later.

Now we’ll summarize in a table a number of Mellin transforms, some of them were
obtained earlier, some of them can be obtained by means of Mellin transform basic
properties.

f(@) 7 (s) 8)

e " I'(s) 0, +00)
e’ -1 I'(s) ,0)
e ir(1s) 0, +00)

(a,
{
(-1

( (

— ¢(s)T(s) (1, +00)

(0
(-1
(
(-

l-lkac sit:rws ) >

log(1 + z) P ,0)

H(l’) = 10<z<1 % 0 +OO>
z*(log2)* H (x) % a,+o00) keN

Here the most interesting is in the first two lines, we see two different functions having
the same Mellin transform. The only diffence is in fundamential strips of the trans-
forms. And now it’s a good moment to formulate a theorem about reconstruction of
initial function having only its Mellin transform.

Theorem 11.1. Let f(z) have Mellin transform f*(s) with fundamental strip {(c, 3).
Let o < ¢ < B and f*(c+it) is integrable. Then the equality

1 c+io0o . s
i i [ (s)a™ dx = f(x)

holds almost everywhere.

i'_,__f

The picture presents a patch of integration used in the theorem.
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11.3 Singularities

Definition 11.2. Laurent expansion of function ¢(s) in point so is an equality:

Here c_,. #£ 0. If » > 0, then s¢ is called a pole of order r. If » = 1, then pole is called
simple. If » = 2, pole is double.

If » <0, then function is analitic in so, because Laurent series in this case degenerates
into Taylor series.

Example 11.6. Consider the function m, it has two poles on the complex plane.
Double pole is at sp = 0 and simple pole is at so = —1:
! L 1oy 3(s+1) + 1
- - - s ... Sp = —
s2(s+1) s+1 0
1 1 1
- - _Z 41— e =0
s2(s+1) s2 s + s+ 50

Definition 11.3. A singular element (s.e.) of ¢(s) at so is an initial sum of Laurent
expansion truncated at terms of O(1) or smaller.

Example 11.7. We consider the same function ¢(s) = as in the previous

1
s2(s+1)
example. Singular elements at so = 0 are:

1 1 1 1

2 s s
Here we can trancate the Laurant expansion wherever we want, but we are to include
terms with negative degree of s. The same is about singular elements in sg = 1. They

are:
1 1 1
2 _ 2 1
[s+1H8+1+ Hs+1+ 3t )}’

We are to include all items with negative degree of s + 1, other items we can include
if we want, but usually there is no need to do it.

Definition 11.4. Let ¢(s) be meromorphic in some area 2 with & including all the
poles of ¢(s) in Q. A singular expansion of ¢(s) in  is a formal sum of singular
elements of ¢(s) at all points of . Notation: ¢(s) < E.

Example 11.8.

CRERp - -3 4|5 sec
s2(s+1) " [s+1],_ 52 5] 2.,

in all complex plane. & =

It is a singular expansion of function ¢(s) = m
{=1,0,1}. There is no pole at point sp = 1, but we can include a singular element at
it in a singular expansion, if we want. & is to include all the poles of the function, but

it also may include any other points. However there is usually no sense in it.

Singular expansion is only a formal sum, we are not trying to evaluate it or even to
simplify. This sum only shows us which poles does function have and what singular
elements are there.
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Example 11.9 (Singular expansion of gamma function). I'll remind you that
gamma function is defined by the equality

—+o00
I'(s) = / e “xt e
0

Integral converges for s € (0, 400}, but functional equation sI'(s) = I'(s + 1) allows to
make a continuation of the gamma function to all complex plane except nonpositive
integers. (It has been already noticed in example 11.3) Now we are going to obtain a
singular expansion of gamma function in C.

First af all, functional equation on gamma function implies

I'(s+m+1)
s+1)(s+2)...(s+m)

F(s):s( , meNuU{0}

It demonstrates again, that gamma function has poles in nonpositive integers, but now

we can learn much more about them. After making a kind of substitution of —m for

s we obtain

(=™ 1
m! s+m’

This means that left side divided by right side tends to 1 as s tends to —m. But we

can understand it as that the right side is a singular element of gamma function in

point s = —m. Now we know singular elements in all the poles of gamma function

and thus we can write a singular expansion:

as s — —m

I(s) ~

meC

As it was already said, we are not trying to evaluate the sum, we only look on it and
see what poles does Gamma function have, and what singular elements are there. For
example we see that all poles of gamma function are simple.

2 1 0

Here the arrangement of gamma function poles is demonstrated at the picture.

11.4 Direct mapping

We have already seen in proposition 11.1, that asymptotics of function f(z) in zero
results on the leftmost boundary of the fundamental strip of Mellin transform f*(s).
The same is with the asimptotics in infinity. It results on the rightmost boundary
of the fundamental strip. Direct mapping is a theorem about what information can
we obtain about Mellin transform, if we know a more detailed asymptotics of inital
function f(x) in zero and infinity.

Theorem 11.2 (Direct mapping). Let f(x) have a transform f*(s) with nonemty
fundamental strip (o, B). Let

flx) = Z cerat(logz)* +0(x”), = —0
(&,k)eA
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where k € NU {0}, —y < —=¢ < a. Then f*(s) is continuable to a meromorphic
function in the strip (—v, 8), where it admits the singular expansion

Y
o= Cs,kw s € (=, 0)

Eea (8 + g)k+17

If asymptotic expansion is given at infinity, then the similar result holds. The only
difference is, that meromorphic continuation is to the right of the fundamental strip
and there is an additional minus sign in singular expansion of transformed function.
Look for explanation in two tables given below.

Singular expansion of transformed function presented in the theorem may seem to be
confusing, but in real life there are no logarithms in asymptotic expansions. If there
is one, it comes in the first degree. In this cases k equals 0 or 1, which makes singular
expansion much more simple.

Let’s put in a table some information that we know about connection between asymp-
totic expansion of initial function and properties of transformed one.

f(z) f"(s)

Order at 0: O(z™?) Leftmost boundary of f.s. at R(s) =
Order at +oo: O(z~") Rightmost boundary of f.s. at §R(s)

Expansion till O(z”) at 0 Meromorphic continuation till ®(s) =

Expansion till O(z°) at +00  Meromorphic continuation till R(s) =

The next table contains information about connections between terms in asymptotic
expansion of initial function and singularities of its Mellin transform.

f(=z) f7(s)
13
Term z*(log z)* at 0 Pole with s.e. %
Term z°(log m)k at +00 Pole with s.e. — (ijﬂlz))kill
Term z* at 0 Pole with s.e. lera
Term z*logx at 0 Pole with s.e. ——1~
(st+a)

ar— g 13
:rff__if
i I.8.A

Information contained in two tables is visualized on these two pictures.

Example 11.10. We have already obtained the singular expansion of gamma function
by means of functional equation on it. Now we’ll obtain the same result, but by
applying the direct mapping theorem.

It was shown in example 11.3, that function f(z) = e~* has Mellin transform f*(s) =
I'(s). Asymptotic expansion of f(z) at 0 is as follows:

2 28 M j
x —1)7
flx)=e" 71,x+§7§+ E:(]') &+ O™
Jj=0

Theorem states, that f*(s) is meromorphicaly continuable to (=M — 1,4+0c0). (And
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we do know it already) The asymptotic expansion of continued function is:

M .
N (-1)? 1 o
f(s),\jZ::O TR s € (=M —1,400)

The last holds for every positive M, so we can rewrite it in the following way:

+

8
T
L
=

.
-

seC

gjtos+J

and this is an asymptotic expansion in entire C. This expansion we have already seen
in example 11.9.

Example 11.11. In example 11.5 we intoduced the Mellin pair

g(z)

T 1 e :
with fundamental strip (1, +00). The asymptotic expansion of g(z) at 0 is

—z —+oo

e :Ej
- Biiq——0
9(@) = T :Z Y T

where B; are so-called Bernoulli numbers, we can suppose that this asymptotic ex-
pansion is a definition of Bernoully numbers. By =1, B1 = —1/2. As in the previous
example, asymptotic expansion is complete, i.e. we can write, that g(z) = ...—&—O(mM)
for any positive M we want. So, direct mapping theorem states, that transform g*(s)
has meromorphic continuation to strip (—oo, +00) = C. The singular expansion there
is

—+oo

g (s) =)y = 3 Dot 1

C
G+lsts °F

j=—1

If we compare it with singular expansion of gamma funcion

-, meC
s+

we can extract the singular expansion of zeta function

=] *2 o]

We see, that there are no poles in nonpositive integers, so we have obtained a result,
that zeta function in meromorphic in entire C with the only pole in so = 1. Since
singular expansion is a sum of initial sums of Laurent expansions, we can extract
information about values of zeta function in nonpositive integers.

(=m) = ()" 22 e NU {0}

By the way, Bar+1 = 0 for £ € N, so zeta function is zero in even negative integers,

¢(0) =-1/2, and

o B2m
2m

¢(—2m+1) = , meN
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Example 11.12. There was another Mallin pair

1 " m
f(@) = x—+1; fi(s) = sin s
with fundamental strip (0,1). Asymptotic expansion at 0
1 = .
F0) = T = (0" 20

implies posibility of continuation of transformed function to the left of fundamental
strip, namly to (—oo,1). Singular expansion there is

+oo n
I (s) =< Z (S_Tl)n’ s € (—0o0,1)

n=0
If we consider asymptotic expansion at 400

—+oo
1/m n—1_-—n
T)=—"—""—= -1 T T (%)
fo) = s = e e
we learn about meromorphic continuation of transformed function to the right of
fundumantal strip. Singular expansion to the right of fundamental strip is

+oo _1)71,71

o) o (
f(s) = *;ﬁ: s € (0,00)
Minus sign, as it has been already said, comes from the fact, that we consider the
asymptotic expansion at infinity.
Now two singular expansions we can conbine into one and it gives us singular expansion
of transformed function in entire C

s T o (=D”
f(S)_sinmcAy;Zs—&—n7 seC

As we see, expansion is right, but we could have obtained it much easier.

11.5 Converse mapping

Direct mapping theorem was a method of obtaining information about transformed
function given the initial function. But usually it is not very interesting. We are
interested in information about initial function and not about its transform. So now we
are ready to introduce converse mapping theorem. It will be given exact formulation,
but further we will apply the theorem without checking if exemined function satisfies
all conditions.

Theorem 11.3 (Converse mapping). Let f(z) be continious on (0,+00) function,
that has a transform f*(s) with nonempty fundammental strip (o, ). Let f*(s) be
meromorphically continuable to (—v, ) with a fininte number of poles there, and be
analytic on R(s) = —v. Let *(s) = O(|s|™") with r > 1 when |s| — +oo in (—v, ).
If .

> d&kw7 s € (7,8

&k)EA

fr(x) =
(
Then an asymptotic expansion of f(x) at 0 is

f) = Y des (%x-ﬁaogm)’f—l)ww

(&:k)eA
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Converse mapping theorem is a theorem, that derives asymptotics of initial function
from singularities of transformed. Next table includes some explanation of the theo-
rem.

() f(x)

Pole at & Term in asymptotic expansion ~ %
left of f.s. expansion at 0
right of f.s. expansion at +o0o

Simple pole

left: —L z7¢at0

right: —z7% at +o0

s—¢

Multiple pole logarifmic factor

left: W (7k1!)kx7§(log x)F at 0
— k —
right: W —ﬁ—kl!Lx $(logz)* at +o0

Example 11.13. Consider a function ¢(s) = % It is analytic in strip (0, v).

We know the singular expansion of gamma function an we can use this knwoledge to
obtain the singular expansion of ¢(s) in the strip (—oo,v):

—+oo

_ (-1 Tw+j5-1) 1
ZOLDD ! T(v) s+

s € (—oo, V)
=0

This ¢(s) is a Mellin transform of some function f(x), which can be obtained by
applying of theorem 11.1
1 v/2+i0c0 .
f@) = 5— ¢(s)x™"ds

2mi v/2—ico

Singularities of ¢(s) in strip (—oo, V) encode asymptotics for f(x) at 0

—1YT(v+j-1)
f(x):Z(]') (;’(i) )x17 r—0

One could have remembed binomial theorem and noticed, that function f(z) = (I+
x)~" has the same expansion at 0. This means, that difference w(z) = f(z) — f(x)
decase to zero faster, than any power of z, i.e. w(x) = O(mM), VM > 0. In fact,

w(x) = 0, and we have indirectly obtained a new Mellin pair

I'(s)I'(v —s)

f@) =)™ F) ==

Example 11.14. Consider a function ¢(s) = I'(1 — s) 57— It is analitic in strip

(0,1). We know singular expansion of every factor in this function and thus we can
write singular expansion

b(s) = 3 (~1)"nl—

‘s+n’

s € (—o0,1)
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Applying of converse mapping theorem yields an asymptics for initial function f(z)

+oo
f(z) ~ Z(fl)"n!x", z—0
n=0
Symbol ‘~’ is written instead of ‘=’ to make an emphasis, that expansion is only

asymptotic, i.e. series from the right side doesn’t converge for any = > 0, but we can
write, that f(z) = M (=1)"nlz™ + O(z™) as & — 0 for any positive M. In fact,

+oo e~ t =0
flx) = 0 1+xzdt'

11.6 Harmonic sums

Definition 11.5. A sum of the type G(z) = >, A f(urx) is called harmonic sum
with base function g(z), frequencies pp and amplitudes Ap. Series A(s) = >, %ﬁ} is
called the Dirichlet series.

Now we are going to discuss when the fifth basic property of Mellin transform holds
for infinite harmonic sums. Next proposition is not formulated fully, base function and
Dirichlet series are to satisfy some certain conditions about speed of growth, but all
this is skipped here for simplicity.

Proposition 11.2. The Mellin transform of the harmonic sum G(x) = >, A\ f(prx)
is defined in the intersection of the the fundamental strip of g(z) and the domain

of absolute convergence of the Dirichlet series A(s) = Y, i—’; which is of the form
R(s) > 0a (or R(s) < ga) for some real oq. In addition, G*(s) = A(s)g*(s).

In next (and last) two examples we’ll derive two well known asymptotics. One is an
asymptotic of harmonic numbers, and the second is Stirling’s formula. But here we’ll
obtain complete asymptotics, which is not known so well.

Example 11.15 (Harmonic numbers). Consider the function

= 1 =X oa/k
W):Z[rkm}:%zm

k=1

It is usuall harmonic sum with frequencies pur = 1/k, amplitudes A\, = 1/k and base
function g(z) = f. Function h(z) is connected with harmonic numbers in very
simple way: h(n) = 1+ % + -+ % = H, for any n € N. Now we are going to
evaluate Mellin transform of G(z). To do this, we are to evaluate the Dirichlet series
A(s) and the tranform of base functon g(x). A(s) =3, %ﬁ} =3 Nk =((1-s).
Transform of base function is g (s) = — 5% with fundamental strip (—1,0), which is
the result of applying of the first base property of Mellin transform. Notice, that the
Dirichlet series A(s) = ((1 — s) converges absolutely in the strip (—1, 0)

Now we are ready to write the transform of h(x), which is
h(s) = A(s)g™(s) = —C(1 = s)

Before trying to write a singular expansion, we are to study zeta function some more.
We know that ((s) ~ :11, it’s a begining of Laurent expansion of zeta function
at 1, but it’s not enough for us. We want to know a coeficient of the zero de-
gree in the Laurant expansion. Let it be 7, so we can write ((s) = 311 + v+

- as § — 1. This v is so-called Euler constant, which is approximatly equal to
0.577215664901532860606512090082402431042159. Keeping all of this in mind, we

can write singular expansion of h*(s):

™

s € (—1,0)

sinms’

“+oo
Rh*(s) < [i — 1] — Z:(—l)kw7 s € (—1,400)

52 s s—k
k=1
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Fundamental strip of the transform and its poles to the right of the fundamental strip
are presented at the picture:

7%//%/////4

Double pole at zero is marked with a big circle.
Now we can finally apply converse mapping theorem and we obtain wishful asympotics:
(~1)* By, 1 1 1 1

-1 - _ -
Kok BT o T o2 T o0

H, ~logn+y+z
k>1

Example 11.16 (Stirling’s formula). In this example we are to use the product
decomposition of gamma function, that looks like

—+oo

logT'(z + 1) + vz = Z [% — log (l—i— %)}

n=1

Let’s denote the right side as £(z). This is a harmonic sum with amplitudes A, = 1,
frequencies un = 1/n and a base function ¢g(z) = = — log(1 + x). The Dirichlet series

is A(s) = 5 Aapn® = 32/ n® = ((—s). Transform of g(x) can be evaluated
by means of the first and the mnth basic properties of Mellin transform. The result
is g"(s) = —cg&= with fundamental strip (—2,—1). As in the previous example,

the Dirichlet series A(s) = ((—s) converges absolutely in the fundamental strip of
transform of base function. So, fundamental strip of transform of 4(s) is (=2, —1) too.

" (s) = =((—s)

We want to obtain an asymptotics in infinity, so we look on meromorphic continuation
to the right of the fundamental strip. Laurant expansion of zeta function at zero is
((s) = 1 — 1log(2m) + O(s), so singular expansion of £*(s) to the right of fundamental
strip i 1s

™

€(-2,-1)

ssinms’

1 1*7]+[1 M}+§M € (—2, +o00)

E*(s)x{(s+1)2+(s+1) 252 n(s+mn) ’

252 s
n=1

Now we can apply converse mapping theorem and derive an asymptotics of function
£(s), which is

z(x):{xlog%(u )] [log:erlog\/_}JrZQnQn_l)#, £ — 400

Here every item from singular expansion was converted to an item in asymptotic
expansion without any simplification, but now we do some, keeping in mind, that
I'(z+1) =2zl so

log(z!) = log (:pze “Vorx ) Z 2n 1) #, x — 400

This dazzling formula is named after Stirling and this is a good reason to finish the
paper right here.



