Chapter 10

Digital Search Trees
Average case analysis of
digital search trees and tries

Nicolai Baron von Hoyningen-Huene

10.1 Introduction

A very common problem in computer science is to search for the appearance of a
string inside a text. There exist algorithms that use suffix trees, which are often
implemented as digital trees to optimize the performance of the search. In this article
some properties of those data structures are analyzed, which can be used to calculate
the average performance and space complexity of algorithms using digital trees. For an
introduction to Rice’s method (see Chapter 9) is recommended, but the mathematical
derivation in this article is largely based on [FS86b].

In the first part basic terms and structures are defined. Subsequently there will be
a detailed analysis of the internal path length and external internal nodes for digital
search trees. The following derivation for properties of tries are just sketched because
of similarity to the precedent part. Then the binary trees are generalized to M-ary
trees and examined. Concluding, a general framework for analysis of properties of
digital trees is presented.

10.2 Trees

First of all we look at rudimentary definitions for the sake of completeness and later
usage, the definitions are taken from [CLR90]. In computer science data has to be
stored in an intelligent way. Often there exist keys which are related to data, thus a
special data structure is needed.

Definition 10.1. A dictionary is defined as an abstract data type storing items, or
keys, associated with values. Basic operations are insert, find, and delete.

The operations new(), insert(i, v, D), and find(i, D) may be defined as follows:

e new () returns a dictionary

99

100 CHAPTER 10. DIGITAL SEARCH TREES

e find (i,insert (i,v,D)) =v
find (3,insert (j,v, D)) = find (i, D) if ¢ # j where 7 and j are items or keys, v
is a value, and D is a dictionary. The operation find (i, new ()) is not defined.

e The modifier function delete (i, D) may be defined as follows.
delete (i,new ()) = new ()
delete (i, insert (i,v, D)) = delete (i, D)
delete (i, insert (j,v, D)) = insert (j, v, delete (i, D)) if i # j

We can define find (i, new ()) using a special value: fail. This only changes the return
type of find. find (i,new()) = fail
A tree is a commonly used structure for implementation of dictionaries:

Definition 10.2. A tree is defined as a data structure accessed beginning at the root
node. Each node is either a leaf or an internal node. An internal node has one or more
child nodes and is called the parent of its child nodes. All children of the same node
are siblings. Contrary to a physical tree, the root is usually depicted at the top of the
structure, and the leaves are depicted at the bottom.

14

24 ‘ 34

Figure 10.1: Example for a trinary tree

And we have a special property of a tree:

Definition 10.3. The depth of a node in a tree is the distance from this node to the
root of the tree.

We can constrain trees to optimize performance for some purpose:

Definition 10.4. A search tree is a tree where every subtree of a node has values less
than any other subtree of the node to its right. The values in a node are conceptually
between subtrees and are greater than any values in subtrees to its left and less than
any values in subtrees to its right.

In the binary world of a computer, trees with binary properties are widely supported:

Definition 10.5. A binary tree is either empty (no nodes), or has a root node, a
left binary tree, and a right binary tree.

10.3 Digital Search Trees

10.3.1 Data Structure of Binary Search Trees

Definition 10.6. A binary search tree is a binary tree and also a search tree. A
new node is added as a leaf.

10.3. DIGITAL SEARCH TREES 101

. g

@/ \@ @/

Figure 10.2: Example for a binary search tree with lexical ordering

The worst case for search is in the order of the number of keys N stored in a binary
search tree, since the tree can be degenerated to a linear list. This arise, when keys are
inserted in a a- or descending order. Instead the average case for successful search in a
binary search tree is logarithmic, because the worst case is very unlikely. It evaluates
to

1 . log N
2(1+N)HN73f(21n2)lgN+2'y 3+O< N)

10.3.2 Data Structure of Digital Search Trees

Keys are always handled by a computer as binary data. Therefore we can use the
digital properties of the keys.

Definition 10.7. A digital tree is a tree for storing a set of strings where nodes are
organized by substrings common to two or more strings.

The ordering of the keys is intuitively: we follow the tree by the bits descending from
the first bit of the key represented as a binary number until we come to a leaf, a zero
directs us to the left, a one to the right. In Figure 10.3 and 10.4 you can see an example
tree, the binary coding of each letter is written next to it. Note, that the structure of
the digital search tree depends of the order of the input of the keys. We define N as
the number of keys stored in this dictionary. The number of nodes is limited by the
number of bits in the keys and larger than lg N but likely less than a constant factor
for many natural situations.

Definition 10.8. A digital search tree is a dictionary implemented as a digital tree
which stores keys in internal nodes, so there is no need for extra leaf nodes to store
the keys.

AOOO

Figure 10.3: Example of a digital search tree with internal path length = 8

The worst case is the same as for binary search trees in a similar pathological case.
But the average case for successful search in a digital search tree is improved:

y-1 3 log N
IgN +5—+3 a+6(N)+O< -

102 CHAPTER 10. DIGITAL SEARCH TREES

/

L
SN

Figure 10.4: Another example of a digital search tree with same keys

SN

10.3.3 Internal Path Length

In this chapter the first property of a digital search tree is analyzed.

Definition 10.9. The internal path length of a tree is the sum of the depth of every
node of the tree.

This property is directly related to the complexity of the data structure: The number
of nodes examined during a successful search in a search tree with IV nodes is the path
length of this node and in average case this counts as one plus the internal path length
normalized through division by N.

Let An be the average internal path length of a digital search tree built from N
(sufficiently long) keys comprised of random bits. Then we have the fundamental
recurrence relation

=1 (N-1
=N — E i > .
Ay =N 1+k_02N_1< i)(Ak+AN 1-k), N>1 (10.1)

with Agp := 0.

The internal path length of any tree of N nodes is the sum of the internal path lengths
of the subtrees of the node plus N — 1, that are the ones missing for the distance from
each node to the root of the whole tree. We count for each possible partition of the
nodes to both subtrees and weight the sum by the number of all possibilities. The
subtrees are randomly built.

We strike now for the goal to approximate An to get an explicit useful term. By
symmetry Ay is equal to Ay_1— and we get

— 1 (N-1
AN:N—1+kZ_:O2N—1< .)(Ak—f—Ak)

This equation is transformed into a functional one on the exponential generating func-
. =N . ZN-1 . . .
tion A (z) = > N_gAnZy with A" (2) = Y%, AN 1 by multiplying both sides

10.3. DIGITAL SEARCH TREES 103

by % and summing for N > 1:

— AnzVt SR (N=1) N = 1 (N-1 2Nt
> N-—1! > (N —1)! +22221%1 k Ak(N—l)!
N=1 N=1 N=1k=0
N N2 = A (N —=1)! 2Nt
DI TR D DR D o vy s TH G T
N=2 k=0 N=k+1
e} Zt oo Ak e} ZN71
= ZZFJF ZF Z N-T(N — k —1)!
t=0 k=0 N=k
z = Ak = z\N-1 1
= =230 3 (5) (N—k—1)
k=0 N=k+1

B L Ap o= 2\ (NFk+1)—1 1
= w23 Y (3) (NTEFD) k=)

. L Ap f2\F o= 72\ N 1
= =2 (5) X G) m
k=0 N=0
2 ZVAp (2\F =
= = 42) gr(3)
k=0
A(z) = zef+24 g) e?
We simplify this by substituting e*B (z) for A (z) with
B(2)=)_ Bx N1
N=0

and
, o0 SN-1
B'(:)= > By i
N=1

That is, A(2) = €*B(z) and A’ (2) = €*B’(2) + ¢*B(z). One can say that B ()
is the expectation of the internal path length, if the number of keys is Poisson with
parameter z. So the equation reads in terms of B(z) as

B’ (2) + B (z) = ze* + 2B (g) eZel

B/(z)+B(z):z+2B(§)

iB L+ZB 2 _ +2iB ﬂ
2 PN N)] NNT T AT PN

N=0
This corresponds to a simple recurrence on the coefficients

1
2N—2

1
BN:*(1*2N—_2) By
for N > 3 with By = 1.

And leads us to an explicit formula for By:

By = (-1)V]ii[j <1 - 2%)

By +By-1 = Bn_1

104 CHAPTER 10. DIGITAL SEARCH TREES

So we can get an explicit formula for An:

A(z) = €°B(?)

I
VN
iMs 7
2%
N———
T
gk

o]

z
_/

Ay = i @7) By (10.2)

k=0
We want to analyse this sum by Rice’s integral resp. a theorem for meromorphic
function, which is derived in 9:

Theorem 10.1. Let ¢ be a function holomorphic in a domain that contains the half-
line [no,00[. If n is big enough we have:

If ¢ is meromorphic on the half-plane defined by R(s) > d for some d < no and of
polynomial growth in this set, then

-~ (n —1)* = — —1)"Res s n! n?
> <k>< D49(0) = = 31" Ress (606) s) + O (103)

k=ng s

where the sum is taken over all poles but no,no +1,...,n.
Therefore we introduce a new series Qn to come closer to the preceding equation:
i 1
o-11(-3)
j=

So we can get By = (fl)N Qn_2and by substitution:

Av=3" (Z) (~1)* Qe (10.4)

k=2

Qn is defined only for integers, so we have to find a meromorphic function to extend
Qn~ to the complex plane. We choose the following function

ew=T1(1-2)

with obviously @ (1) = Q« and you can see clearly that Q(QQ(EJ)V) is a correct extension:

QN=ﬁ<1_i>:H§1(1‘2_1;‘): _em

j=1 j=N (1 - 2_1) Hj:l (1 - 2j+N)

10.3. DIGITAL SEARCH TREES 105

Our equation now has the form:
N
_ NY, .k Q)
1= (1) v gt

Q (z) is obviously meromorphic on the half-plane defined by %R(s) > d with d := % and
the function is also polynomial. So we get the following equation by theorem 10.1:

Ay == > (1) Res. <B (N +1,-2) ﬂ) +0 (N%) (10.5)

~ Q(277*2)
We proceed to evaluate the poles at z < 1 for B(N + 1, —=z) %:
e B(N +1,—z) is singular at z = 0,1 because the I" function is zero in the
denominator.

e z =3+ 21?21“ for 7 = 1,0,—1,... and all £ > 0 are poles since at these points

27*%J = 1 which causes one of the factors of Q (272+2) to vanish.

Only the poles for z > % are within the region of interest.
So we can approximate the residues at the poles. Beginning with z = 1:

—B(N +1,-2) % =-B(N+1,-2) 7— 2172+1 0 (QQS)H)

First analyze —B (N 4+ 1, —z):

T(N+1)T'(—=2)
I'(N+1-2)
N!(—z—-1)!
(N =—2)!

= (=N -
= H]kvzo(sz)
= (=N -
= anzlk(%fl)

~B(N+1,-2) = -

Il Il Il
W [—

N —

I\ N —

\ = =
e =
—

= T I
—~ wmin |
~— —
| N—— =
ENES Lo
SN— R‘|N
~ NI
| SN—
= |

We want to approximate this by a Taylor series expansion. To do this the following
lemma is helpful:

Lemma 10.1. If F(z) = [[;cp #(z) for some index set R, then the Taylor series
J

expansion of ' at a, if it exists, is given by

F (z) = F(a) <1+Z%(z—a)+0((z—a)2)>

JER

106 CHAPTER 10. DIGITAL SEARCH TREES

Proof.
G =]l9®
JER
G(=)=> 9 [o
JER kER#]
G (2) _ 2ierdi) liens; 90 () _ S g5 (2)
G (2) HjeR gi (2) JeR gj (z)

At a = 1 we have the expansion for the Beta function:

1 i 2\ 7!
~B(N +1,-2) 1_/‘11"[(17—,)

j=2 J

= LN E) E-D) 10 (1)
- 1]jz—N(HN_1—1)+O(z—1)

N

I

with Hy_1 :nyrlanO(%). So we get

—B(N+1,—2)=— —NH+WN-1)+0(2-1)

z—1

L__ with the series expansion for —2— leads to:

Approx1mat10n of 1_2—2F1 e —1

1 1 1 | 5
- = — _— O ((— 1
12—+t [—en2t=#D ~ (=42 2 12 T ((==+1)7%)
1 1
= ———— = —1
Goom2 T2 t0E-1
The missing part % is analyzed similarly to —B (N + 1, —z) by using the Taylor
expansion for the @ function:
Q(1) A
= Q]I (1-27)
—z+1
Q) 1
97—t 5

= 17a1n2(271)+o((271)2)

witha=1+2+1+ L+ .. ~1,606695.
Connecting the analyzed parts, the integrand is approximately:

fB(NJrl,fz)Q(sz(ZQ) = <72]:]1 7N(HN71*1)+O(271))

X <m+%+0(271))

(1—aln2(z—1)+0 ((z— 1)2))

X

10.3. DIGITAL SEARCH TREES 107

The residue at z = 1 is the Laurent coefficient a_; of Z—il in this product:

N 1
R@Szzl = —E(HN 1—1)+N(0{—§)
1
— _NlIgN — N(Tguw+ >+Om
Then approximate the residues at the other poles z =1+ 21::12’“
1 2mik
Res_ 12wk = *EZB(N+1,717 1n2)
k#0
' I'(N+1 1— 2z
B(N+1,71721Mk) _ fw+yr (QM)
n2 r (N T In2)
271 I'(N
_ AT <717 mk) (2) _
2 /T (N-55)
Now the standard approximation formula for the I' function is used to simplify this
term.
I'(N+1) o 1
T — N1 -
v = Y (vo(y)
2mik 2mik 1
Resz liQIZ;ZZk = NP<* — 1)(N*l) In2 <1+O<N))

N

2
2mik

- (- 35) 0% (140 (5))
2mik\ 2miklgN 1

- r(a3) 2 (0(3)

The sum of residues at the points z =z =1+ 2"““ is found to be

Res, ; 2:10. = —N6(N)+0O(1)

1n2

where

o 1 2mik 27miklg N
n2 kz < In 2) €

is a small oscillatory term. So finally we insert these results in (10.5) and get the
following theorem:

Theorem 10.2. The average internal path length of a digital search tree built from N
records with keys from random bit stream is

1 1
AN:NgN+N(}7—a+ +M))+o@ﬁ)

Proof. This follows from the derivation above. O

10.3.4 External Internal Nodes

A property of trees of some interest is the number of internal nodes which have both
links null. An alternate storage representation could be used for such nodes to save
space.

108 CHAPTER 10. DIGITAL SEARCH TREES

Theorem 10.3. The average number of nodes with both links null in a digital search
tree built from N records with keys from random bit streams is

<ﬁ+1—Q%o <i+a fa) +5*(N)) +O(N%)

where the constants involved have the values

a_1+ + = +15+ .. & 1.606695...,

Qm:—-z-§+ ~ .288788... and

B=12 (1) 4+ 22 (24 1) 4 22 (4 L4+ 3) +.. ~T.74313...

The function 6* (N) is a periodic functzon n lg N, with |6* (N)| < 107%. The approa-
imate value of the coefficient of the leading term is 0.372046812....

Proof. As before, we use a simple transform with generating functions to derive an
explicit sum, then use Rice’s method to evaluate this sum. The number of external
internal nodes is

1 N -1
Cn = ZQN——I< i) (Cr +Cn-1-k), N >2 (10.6)

with C7 = 1 and Cy = 0. This follows from the fact that the number of nodes with
both links null in a tree is exactly the sum of the numbers of such nodes in the two
subtrees of the root while the tree has more than one node.

In terms of the exponentlal generating function C'(z) = > ¥_, CN *— by multiplying

both sides by m and summing for N > 1, we have:

N-1

= Cnz -1 VT

= On2V 1 > > 1 N -1 VT
Z(1\7—1)! L+ _2<2k 2N1< k)Ck(N—l)!

N=1

This leads, similar to Ay, to the equation

e

C'(2)=1+2C (g) e (10.7)

Again we introduce a new generating function D (z) = > v _, DNz defined by D (z) =
e *C (z) to get a somewhat more manageable form:

D' (2)+D(z)=e % +2D (g)
By the recurrence on the coefficients we get:

DN+ Dn-1 = (*1)]\771 + Dn-1

2N—2

Dy = (~D)N"1 (1 - qN_Q) Dy, N>2 (10.8)

with D1 = 1, Do =0.

We define the constant q := % (we will see that only this constant changes for M-ary
trees). This recurrence is inhomogeneous, so we get a somewhat more complicated
explicit form:

2

—1N-2

DN—— N-1 (1_qj)

i=1

j=1

<.

10.3. DIGITAL SEARCH TREES

Rewriting this in terms of

Ry = Y

and transforming like (10.2) back:

Dy = (71)N Rn_2CN

Il

=

|
i
/N
> 2
N——

-]

We have the following explicit sum for the desired quantity:

Cn=N - Z())" Ri—a

109

(10.9)

This sum is similar to (10.4) but more difficult to evaluate because Ry is more com-
plicated than Qn. Because R(z) does not extend Ry for positive integers, we get by
Taylor expansion that Ry = N + 1 — a + Ry. R}y satisfies a simple recurrence, con-
verges very quickly and is polynomial bounded, so we extend R} by the meromorphic

function R* (z)

. (N4+1—a)¢"! 1 .
Ry = l—qN+1 +l—qN-ﬁ-lRN-’_l
. o0 Z+1+’L qz+1+i
re = 3 2)¢
= o (1 —¢**1*7)

Substituting, we have

Cn=N-— Z() "(Ri_o+k+1—a)

After applying the elementary identities of Pascal’s triangle

) <JZ> Cf =3 <Z>a<1>’“ 0,

k=0 k=0

we have the simplified result

Cn = (N)(a+1) i() ng

(10.10)

110 CHAPTER 10. DIGITAL SEARCH TREES

Now, by Theorem 10.1 and again looking only at the half-plane to the right of the line
z= 1 , we know that

On—(N=1)(a+1) == (~1)"Res. (B(N +1,-z) R* (z = 2)) + O (N%)
(10.11)
In this case we look at the poles for R* (z —2) at 1 £ 21::'2'“ and see that they are all
single poles. The main term is given by N lim._.1 R* (z — 2); the poles for k # 0 add

a small oscillatory term.

Lemma 10.2.
> n

u . 1
nzz;) [Tie: (1=g") B [0 (1= ¢*u)

Proof. The coefficient of u™¢™ on both sides is the number of ways to write n as the
sum of m nonnegative integers. O

The method of calculating R* (—1) is to express R* (z) in terms of generating functions,
which generalizes the function of Lemma 10.2, then to expand that function and exploit
certain properties of its derivatives. Specifically, we define

)
; 'Llliqv)

This is the generating function for restricted partitions, the coefficients of u"v™g" is

the number of ways to partition k£ into m parts not exceeding n. By Lemma 10.2 we

get:
an 1 1*‘])

1) Jrl_zl_[k L (1—q")

1
Bl) = [=) ~
F(7):Q;ol_

Also we have

1 > q’c
Fi (u,1) = == ,
Hi:l (1 - q'u) (;) (1 —q*u)

so that FY (1,1) = & Furthermore, we have

which finally gives the following expansion:

z+1
* q z+1 / z+1
R (&)= 1 (G4 1=) (P (L) +) + 5 (L)
From this formulation, a Taylor expansion around z = —1 is straightforward:
qz+1 1

1
- _ = 1
1—¢*>t (24+1)Ing 2+O(z+)

10.4. DIGITAL SEARCH TRIES 111

F(L¢M)=F(1,1) + (2 +1)IngF; (1,1) + O (2 + 1)
F (1, =F (1,1) + (. +) IngF{, (1,1) + O (= + 1)?) ,

so that
F(1,1)+1

Ing

J k
F(1,1) = Z: Jllfq (Zquk» (10.12)

(it
FlYy(1,1) = (: j¢ - <;13qk>) (10.13)

R(z)=— taF(1,1) - Fly(1,1) + O (2 +1)

=1 —1(1—q

J
Actually, we can relate Fy (1,1) to a and Q. Because

F{(171):F2l(171)+F(1a1)

thereis Fy (1,1) = ‘2‘2—;} +1. There does not seem to be an easy way to express Fi (1,1)
in terms of o and @), so we denote that constant simply by 8. Collecting terms, we
have shown that the residue of the integrand at z =1 is

2 1
(ﬁ“‘cz—w(“ ‘a‘m»

It remains to calculate the residues of the integrand at the other singularities.

This calculation is straightforward: the residue of 17q++1 at z = -1+ 21::'; is fm, and
the other terms in R* (z) contribute a factor of Qz’i’;q. The factor for B(N + 1, —z)

is expanded exactly as in the preceding Taylor expansion for the internal path length;
thus we have the oscillatory term

) 2mk 21k \ orikigN
0" (N) e
(Qoolnqkzz;éO Ing (1nq>

This completes the calculation of the coefficient of the linear term. O

10.4 Digital Search Tries

10.4.1 Data Structure of Tries

Definition 10.10. A digital search trie is a digital tree for storing a set of strings in
which there is one node for every prefix of every string in the set.

The name of this data structure comes from the word retrieval. The word retrieval is
stressed, because a trie has a lookup time that is equivalent to the length of the string
being looked up. Again we represent the strings as keys in binary form. It may be
convenient to assume that the strings are all of same (binary) length, but the method
is also appropriate for varying length strings, if no string is a prefix of another.
Digital search tries compared to trees have much improved worst case performance.
Their average case performance is asymptotically optimal. If N records with keys from
random bit streams are inserted into an initially empty trie, then the average number
of nodes examined during successful search reads as

1
lgN—&-ﬁ—f— +(5()+O(N)

112 CHAPTER 10. DIGITAL SEARCH TREES

Aooo Boo1 Coro ‘ Do11

Giio ‘ Hiy

Figure 10.5: Example for a digital search trie with external path length = 18

10.4.2 Data Structure of Patricia Tries

You can optimize the performance of a trie constructed with N keys by ensuring that
this trie has just N — 1 internal nodes by collapsing one-way branches on internal
nodes and get the so called Patricia tries:

Definition 10.11. A Patricia tree is defined as a compact representation of a digital
search trie where all nodes with one child are merged with their parent.

G110 Hiy

0 1 0 1

Boo1 Coio Do11

Figure 10.6: Example for a Patricia trie

The average number of nodes examined during successful search is one less than for
standard tries.

10.4.3 External Path Length

Definition 10.12. The external path length of a tree is the sum of the depth of every
leaf of the tree.

The fundamental recurrence for the average external path length of a binary trie is

— 1 (N
AE@—N+ZQ—N<IC> (a4 afL), N=2 (10.14)
k=0
with A([)T] = A[lT] = 0. This is the number of nodes examined during all successful

searches. Note that since no key is stored at the root, the subtrees have a total of N
keys. The resulting functional equation on the exponential generating function is not
a difference-differential but simply a difference equation:

AT (2) = 2 (e* = 1) + 24T (g) e” 2
It is still convenient to transform the equation with A (z) = e* B (z) to get the equation
B™ (2) =2 (1—e) + 2B (5)
()=z(1-€e7)+ 5

This yields directly

10.4. DIGITAL SEARCH TRIES 113

and
[N k
-5 (1) =i
k=2 2
This can be handled directly by Rice’s method or Mellin transform techniques, as
described in full detail in [Szp00].
The fundamental recurrence for the average external path length of a Patricia trie is

P 1 .1 (N P P
AEV]_N<12N——1)+ZQ_N<IC> (A7) N2 01
k=0

with Agp] = 0. The external path length is the sum of the ones of the subtries of the
root plus the number of nodes in the subtries (V) unless one of the subtries is empty
which has the probability . The resulting functional equation on the exponential
generating function is

AP () =2 (ez - eg) +2AF (g) e3

with transformed version

B (2) =z (1-e %) 4287 ()
which yields directly
and

o0 k
P _ N\ k(=D" _ m
AL _;<k>72“1 =A N
Given the result for binary tries the average external path length for Patricia tries is
obvious.

10.4.4 External Internal Nodes

The average number of internal nodes with both sons external are computed for Pa-
tricia tries. The derivation is similar to the one for digital search trees, so we only
sketch it here. We start with the recurrence

1 (N
ey =ZQ—N<k> (ci?+cil), N=3 (10.16)
with C([)P] = CEP] =0 and C’£P] = 1. This corresponds to the functional equation
[Pl (L) — (E)Q 2017 (E) 5
C" (2) 5) C 5)¢
which transforms to)
DIF(4) — (E) ~= | oplP] (E)
(%) 5) ¢ + 3
and eventually gives the sum

-1 O itg

2

Knuth gives specific evaluations of such sums. The eventual result is that the propor-
tion of nodes in Patricia tries with both sons external is ﬁ = .3606... plus a small
oscillatory term. Thus, according to this measure, digital search trees are (slightly)
more balanced than Patricia tries.

114 CHAPTER 10. DIGITAL SEARCH TREES

10.5 Multiway Branching

Above only binary trees have been analyzed. But we can generalize the average analysis
to M-ary trees, where each node contains M links to other nodes, numbered from 0 to
M —1. It turns out that the analysis given above survives largely intact for the M-ary
case. For example, to find the average number of nodes in a M-ary digital search tree
with all links null, we begin with the fundamental recurrence:

ey =
1 N -1 [(M] [(M] [(M]
Z MN-1 <k1,k2,...,k1\/1> (Ckl MG C’“M) ’
k1+ko+...+kpy=N—1
N>2 (10.17)
with C{M] = 1 and C([)M] = 0. The argumentation is the same as for the digital

search tree. The number of nodes with all links null in a tree is exactly the number of
such nodes in all the subtrees of the root, unless the tree has just one node. Again the
partitions of N —1 nodes without the root into M subtrees weighted by all possibilities
are examined. All the subtrees are randomly built according to the same model.

By symmetry, (10.17) is equivalent to

MN=1\ ky, ks, ...k
ki+ko+...+kpy=N—1 15 B2y eeey B M

1 N -1
with C’%Ml =1 and C([)M] = 0. Now we introduce the exponential generating function

[M] N
CM(z) =%, CNN!Z and derive the following difference-differential equation:

C[M]’(Z) — 14 MM (%) (eﬁ)M_l — 14 MM (%) (6(1—ﬁ)z) (10.18)

For M = 2, this is exactly the equation derived from (10.7); moreover none of the
manipulations used for solving it depend in an essential way on the value of that
constant.

Corollary 10.1. The average number of nodes with all links null in an M-ary search
tree (for M > 2) built from N records with keys from random bit streams is

1 1 1
N(B™M 1 — (L FalM? M) My) 4o (Né)
QLO] In M
where the constants involved are given by
M [ee]
alM = > he Mk'1—1’
[M] [eS)
Qoo - Hk:1 (1 -]]t%fl)7
M] _ oo kM k 1
ﬁ[] - Ek:l Hi'c:l(]wi_l) Ejzl Mi—1
and the oscillatory term is
M _ 1 2mik 2mik) 2miklg N
d](N)_rolnlw 2 k0 D (14357) e e

10.6 General Framework

The methods that we have used in the previous sections can be applied to study many
other properties of digital trees. If X (T') and z (T') are parameters of trees satisfying

X (T) = > X (Ty) 4 = (T) (10.19)

subtrees T of the rootof T

10.6. GENERAL FRAMEWORK 115

then the exponential generating functions for the expectations Xy and zny for an
M-ary digital search tree built from N records with keys from random bit streams
satisfy

X' (2)=MX (ﬁ) e1-3r)= +xz(2)

This is derived in exactly the same manner as (10.18). Now in terms of the generating
functions Y (z) = e *X (2) and y (2) = e~ *z (2) this becomes

z

Y’(z)+Y(z):MY<M

)V () +y () (10.20)
This leads to a nonlinear recurrence like (10.8) satisfied by Y, with the solution sought
given by Xy = fo:o (]Z) Y. If the quantity (—1)* Yy is sufficiently well behaved, we
can study its asymptotics and find a function Y;" which

(i) is simply related to Yj so that ZkN:O (JZ) (Y;c —(—1)* Yk*) is easily evaluated,
(ii) satisfies a recurrence of the form Y3, = (1 — g (M, N)) Yy + f (M, N),
(iii) goes to zero quickly as N — oo.

Depending on the nature of g (M, N), f (M, N) and the speed of convergence, condi-
tions (ii) and (iii) may allow the recurrence to be turned around to extend Yy to the
complex plane and so allow the desired expectation to be computed by evaluating the
sum SN @) (Yk — (-1 Yk*) as detailed in the previous sections.

The same type of generalization applies to the study of tries (and Patricia tries), and
the simpler nature of the recurrences follows through the generalization. For example,
the exponential generating functions for the expectations Xn and xn of parameters
of trees satisfying (10.19) for a random trie built from N records from random bit
stream is

X (2) = MX (%) e 4z (2) (10.21)

which is considerably easier to deal with. The equation can be solved by Rice’s method
and also by Mellin transform techniques.

This general framework allows quite full analysis of the types of trees considered, and
they clearly expose the fundamental differences and similarities among the analyses.

116 CHAPTER 10. DIGITAL SEARCH TREES

