Winter School St. Petersburg

Suffix Trees

Katharina Pentenrieder

Introduction

Usage

C Solving many string problems in linear time

History

String algorithms

C Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

Suffix tree algorithms

- 1973 P.Weiner: first linear construction algorithm
- 1976 E.M.McCreight: more space-efficient algorithm
- 1993 E. Ukkonen: conceptually different approach

Outline

1. Data Structures

Suffix tries and trees

2. Construction Algorithms

- Naïve algorithm
- Algorithms of Weiner, McCreight & Ukkonen

3. Examples of Use

- Exact string matching problems
- Longest common substring
- Assembly of Strings

3/24 **4.** Conclusion

Data Structures I

Preliminaries

Notations					
Σ	finite, non empty alphabet	$S=s_1s_2s_n$	arbitrary string		
α, β, γ	possibly empty strings	S =n	length of S		

Definitions				
$S[ij]=s_is_{i+1}s_j$	substring of S			
S[1i]	prefix of S that ends at position i			
$S_i=S[in], 1 \le i \le n+1$	suffix of S that starts at position i			
S _{n+1}	empty string ε			
S(i)	character at position i in S			
$\sigma(S){=}\{S_i 1\leq i\leq S \}$	set of all suffixes of S			

Data Structures II

Suffix Trie Definition

A suffix trie for a string $S \subseteq \Sigma^n$ is a directed tree with edge labels $\in \Sigma$ where

- The concatenation of the labels of all paths from the root to a leaf just give $\sigma(S)$.
- The labels of sibling edges from one node start with different characters.
- Atomic tree

Termination Symbol \$

No suffix must be prefix of another suffix.

Data Structures III

Suffix Tree Definition

A suffix tree $\mathcal T$ for a string $S\subseteq\Sigma^n$ is a compact suffix trie.

This means

- \mathcal{T} has exactly n leaves numbered 1 to n.
- The concatenation of the labels from the root to a leaf i spells out S_i . (\rightarrow all paths give $\sigma(S)$)
- The labels of sibling edges from one node start with different characters.
- Every node except the root has at least two children. (→ compact)

More Definitions

Paths and Labels

- A path is a downwards connected sequence of edges.
- The label of a path is the concatenation of the edge labels on the path.
- The path-label of node n is the concatenation of the edge labels on the path to node n. (\rightarrow path-label of leaf i is S_i)

Reference pair (n, α) of s

n: node on the path to s

 $\boldsymbol{\alpha} :$ concatenation of edge-labels from n to s

s not necessarily a node

Canonical reference pair

n: last node on the path to s

A naïve algorithm

Suffix tree for S

- Start: single edge S[1..n] $=S_1$ \rightarrow Tree \mathcal{T}_1
- Successive adding of S[i..n]\$=S_i\$, i from 2 to n+1

- Find longest path from root in \mathcal{T}_{i-1} matching a prefix of S_i .
- Matching ends at node n (eventually new created).
- Add new edge (n,i) labelled with unmatched suffix of S_i.

Time analysis

Inserting S_i takes $\mathcal{O}(|S_i|)$ time \rightarrow Complexity: $\mathcal{O}(n^2)$

Ukkonen's Algorithm I

Proceeding

- Construction of suffix tree for string S in $\mathcal{O}(n)$ via implicit suffix trees $\mathcal{I}_1..\mathcal{I}_n \rightarrow$ true suffix tree \mathcal{T}
- Start: $\mathcal{O}(n^3)$ method to build \mathcal{T} \rightarrow optimization to linear time

Implicit suffix trees

- Remove every occurrence of \$.
- Re-establish suffix-tree conditions.
- $\mathcal{I}_{i} \text{ implicit suffix tree for S[1..i]}$

 $(\mathcal{I}_n \text{ encodes all suffixes of S!})$

Ukkonen's Algorithm II

Algorithm at a high level

Construct implicit suffix tree \mathcal{I}_1 .

For i from 1 to n-1 { for j from 1 to i+1 {

- 1. find end of path from root labelled S[j..i] in \mathcal{I}_i
- 2. apply appropriate **extension rule** (S[j..i+1] in tree)
 - 1. S[j..i] ends at leaf \rightarrow add S(i+1) to edge label
 - 2. No path from end of S[j..i] starts with S(i+1) \rightarrow add new leaf edge labelled S(i+1) and leaf node j
 - 3. \exists path from S[j..i] beginning with S(i+1) \rightarrow do nothing

Ukkonen's Algorithm III

node s(u)

suffix link

node u

Suffix Links Definition

Suffix link (u, s(u)) is a pointer from internal node u labelled $x\alpha$ to node s(u) labelled α .

Single Extension Algorithm

- 1. Find first node u up from S[j-1..i] that has S[j-1..i] S[j..i] suffix link or is root (at most one edge up!)
- 2. If $u \neq root$: walk down from s(u) following path for α . If u = root: walk down from root following path for S[j..i].
- 3. Apply appropriate extension rule \rightarrow S[j..i]S(i+1) in the tree
- 4. If new internal node w was created, create suffix link (w, s(w))

Time complexity

11/24

Worst case not yet improved: $O(n^3)$

Ukkonen's Algorithm IV

Problem:

12/24

Down-walking along path labelled α costs $\mathcal{O}(|\alpha|)$ time

Trick 1: Skip/Count

- Skip edge if |unmatched part of α | > |edge label|
- Time complexity
 - Traversing of edge $\mathcal{O}(1) \rightarrow \text{down-walk}$ in $\mathcal{O}(\#\text{nodes})$
 - \rightarrow 1 phase in $\mathcal{O}(n) \rightarrow$ algorithm in $\mathcal{O}(n^2)$

Edge-label compression

- Time for algorithm \geq size of its output ($\Theta(n^2)$) \rightarrow different representation scheme for edge labels
- Pair of indices (i,j)
 - i beginning position of substring in S
 - j ending position of substring in S

Ukkonen's Algorithm V

Trick 2: Rule 3 is a show stopper

- If rule 3 applies for S[j..i] it also applies for any S[k..i], k>j
 (Implicit extensions)
- End phase after first extension j* where rule 3 applies

Trick 3: Once a leaf, always a leaf

- $j_i = \#$ initial extensions in phase i where rule 1 or 2 applies $\rightarrow j_i \leq j_{i+1}$
- In phase i+1 do
 - Label new created leaf-edges $(n,e) \rightarrow S[n..i+1]$ (e global symbol denoting current end)
 - In extensions 1 to j_i only increment $e \rightarrow rule 1$ for leaf-edges

Combination

In phase i+1 explicit extensions only from

- Extension $j_i+1 = active point$ to
 - Extension j* = end point

Ukkonen's Algorithm VI

Single phase algorithm

- 1. Increment index e to i+1
- 2. Explicitly compute successive extensions (using SEA) starting at j_i+1 until first extension j* where rule 3 applies (or until all extensions are done)
- 3. Set j_i+1 to j^*-1 to prepare for next phase.

Time complexity

Suffix Links + Edge Compression + Trick 1-3 allows construction of suffix tree for String S in O(|S|).

Creating the true suffix tree

Conversion in $\mathcal{O}(|S|)$.

- 1. Add termination symbol \$ to end of S.
- 2. Let Ukkonen's algorithm continue with extended string.
- 3. Replace each index e on every leaf edge with n.

McCreight's Algorithm I

Definitions

- T_i : intermediate suffix tree encoding suffixes S_1 to S_{i-1}
- McHead(i): longest prefix of S_i that is also prefix of S_j , j<l
- McTail(i): S_i-McHead(i)

Proceeding

The "Algorithm M" inserts suffixes in order from S_1 to S_n . $\mathcal{T}_i \to \mathcal{T}_{i+1}$

- Find end of path labelled McHead(i)
- n = node labelled McHead(i) (eventually new created)
- Add new leaf i and new edge (n,i) labelled McTail(i)

More efficiency

- Edge compression, suffix links
- Lemma: McHead(i-1) = $x\delta \Rightarrow \delta$ is a prefix of McHead(i)

McCreight's Algorithm II

Step i of "Algorithm M"

- 1. Starting from McHead(i-1)= $\xi \alpha \beta$ walk upwards till first node a (labelled $\xi \alpha$); if a = root go to 3.
- 2. Follow suffix link to node c (labelled α)
- 3. "Rescanning": walk downwards along path labelled β using skip/count trick \rightarrow node d
- 4. Add suffix link (a,d)
- 5. "Scanning": search downwards along path labelled γ (unknown length!) \rightarrow node e
- 6. Add leaf i and edge (e,i)

Time complexity

Rescanning and scanning in $\mathcal{O}(1) \ \rightarrow \mathcal{O}(n)$

Weiner's Algorithm I

Definitions

- W_i : suffix tree for $S_i = S[i..n]$
- WHead(i): longest prefix of S_i that is also prefix of S_i,j>i

Proceeding

Build W_{n+1} = edge (root, n+1) labelled \$ For i from n to 1 do

- Find WHead(j) in \mathcal{W}_{i+1}
- w = node labelled WHead(j) (eventually new created)
- Create new leaf j and edge (w,j) labelled S[j..n]-WHead(j)

More efficiency

- Edge compression
- 2 vectors: Indicator Vector $\mathcal{I}_u(x)$ and Link Vector $\mathcal{L}_u(x)$

Weiner's Algorithm II

The Vectors

- $\mathcal{I}_u(x)=1 \Leftrightarrow u \text{ labelled } \alpha \And \exists \text{ partial path in } \mathcal{W} \text{ labelled } x\alpha$
- $\mathcal{L}_{u}(x) = \uparrow \hat{u} \Leftrightarrow \hat{u}$ labelled $x\alpha \& u$ labelled α ; otherwise $\mathcal{L}_{u}(x) = null$

Vector Usage

 $\mathcal{W}_{i+1} \to \mathcal{W}_i:$

- Start at leaf i+1, find first u with $\mathcal{I}_u(S(i))=1$ (u labelled α)
- Continue till first u' with

 *L*_{u'}(S(i)) ≠ null (I_i = |u-u'|)

- u, u' don't exist $\rightarrow \mathcal{W}$ Head(i)= ϵ
- u, u' exist \rightarrow WHead(i)=S(i) α & WHead(i) ends I_i chars below \hat{u}
- u exists, u' doesn't \rightarrow WHead(i) ends I_i chars below root

18/24 Time complexity

Head (i) found in $\mathcal{O}(1) \to Complexity of algorithm <math display="inline">\mathcal{O}(n)$

Exact string matching

Exact string matching

- Find all occurrences for pattern P in text T:
 - Build suffix tree in $\mathcal{O}(|\mathsf{T}|)$ and match P along unique path $\mathcal{O}(|\mathsf{P}|)$.
 - P exhausted: numbers of leaves below are starting points for P
 - mismatch: P does not occur

Comparison with KMP and BM algorithms

- P and T fix; P fix \rightarrow same time and space bound
- fixed T and varying Ps $\rightarrow O(|T|) + \Sigma_P O(|P|+|#occurrences of P|) \rightarrow vastly better performance$

Exact set matching

• **Task:** Find all k occurrences of a set of strings \mathcal{P} in text T

Approach	Tree	Search	Total
Aho-Corasick	$\mathcal{O}(\Sigma P)$	$\mathcal{O}(T)$	$\mathcal{O}(\Sigma P + T +k)$
Suffix Trees	$\mathcal{O}(T)$	$\mathcal{O}(\Sigma P)$	$\mathcal{O}(\Sigma P + T +k)$

Longest common substring

Generalized suffix tree

Definition:

Tree which represents the suffixes of a set $\{S_1, S_2, ..., S_n\}$

- Construction: Variation of Ukkonen's algorithm
 - 1. Build tree for S_1 \$
 - 2. Match S₂\$ against path in tree, first mismatch S[i+1] $rac{1}{1}$
 - \rightarrow tree encodes $\sigma(S_1)$ and implicitly $\sigma(S_2[1..i])$
 - 3. Resume Ukkonen's algorithm on S_2 in phase i+1
 - 4. Repeat for each string

Longest common substring (Ics)

Proceeding:

- Build generalized suffix tree for S₁ and S₂
- Mark internal nodes v with 1(2) if leaf in subtree of v represents suffix of $S_1(S_2)$
- Search node marked 1 and 2 with longest path-label (= lcs)
- **Time complexity:** $\mathcal{O}(\Sigma |S_i|)$

String Assembly I

Introduction

21/24

- **Application:** DNA Analysis
- Definition: Superstring Problem
 For a given set of strings {S₁, S₂, ...S_n} find superstring
 S which contains every S_i as substring.
 - **Solution:** Blending

Assembling of two strings S_i , S_j as follows: Find longest suffix α of S_i which is prefix of S_j and create new string **blend** $(S_i, S_j) = S_i - \alpha + S_j = S_i - ov(S_i, S_j) + S_j$

• GREEDY-Heuristic with Suffix Trees (Kosaraju/Delcher) \rightarrow approximate solution for smallest S

String Assembly II

GREEDY-Heuristic with Suffix Trees

Generalized suffix tree \mathcal{T} :

- leaf numbers: (i, p) \rightarrow suffix $S_1[p..|S_1|]$
- implicit \rightarrow \$ omitted, internal nodes can be leaves
- substrings of other strings and copies of identical strings removed

Arrays & Sets:

- $\textbf{chain} \rightarrow already$ blended strings
- $wrap \rightarrow$ unavailable suffixes and prefixes
- $S_u \rightarrow$ suffixes available at node u initially $S_u = \{i | u \text{ has leaf number } (i, 1)\}$
- $P_u \rightarrow$ prefixes available at node u initially $P_u = \{i|u \text{ has leaf number (i,d), d>1}\}$

String Assembly III

Proceeding

- 1. Find node u with largest string-depth
- 2. Find pair(i,j) with
 - $i \in S_u, j \in P_u$
 - chain(i) = 0, wrap(i) ≠ j
- 3. Discard all i from S_u with chain(i) $\neq 0$
- 4. Remove i from S_u and j from P_u and set
 - chain(i) = j
 - wrap(wrap(i)) = wrap (j), wrap(wrap(j)) = wrap (i)
- 5. Repeat 2. 4. until no further blends are feasible
- 6. Union remaining P_u to set P of u's parent
- 7. Discard S_u and remove u from string-depth-order
- 8. Goto 1.
- 23/24 9. Generate superstring from chain array

Conclusion

Suffix Trees

C Implementation Details

Comparison of the algorithms

- Time
- Space
- Comprehensibility

Applications