Winter School St. Petersbhurg

Suffix Trees

Katharina Pentenrieder

Introduction

o —_— _
Usage
<= Solving many string problems in linear time

History

e String algorithms
<~ Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

e Suffix tree algorithms

— 1973 P.Weiner: first linear construction algorithm

— 1976 E.M.McCreight:
more space-efficient algorithm

— 1993 E. Ukkonen: conceptually different approach

Qutline

1. Data Structures
<= Suffix tries and trees
2. Construction Algorithms
& Naive algorithm
e Algorithms of Weiner, McCreight & Ukkonen
3. Examples of Use
¢ Exact string matching problems

¢ | ongest common substring
e Assembly of Strings

w1 4. Conclusion

Data Structures |

Preliminaries
Notations
x finite, non empty alphabet |S=s;s....s, | arbitrary string
o, B, v | possibly empty strings 1IS|=n length of S
Definitions
S[i..]]=S;S;,1---S; substring of S
S[1..1] prefix of S that ends at position i
Si=5[i..n], 1< 1 < n+1 suffix of S that starts at position i
S, 1 empty string €
S(i) character at positioniin S
o(S)={S|1 < i < |S]} set of all suffixes of S

Data Structures ||

Suffix Trie

Definition

A suffix trie fora string S C X"is a
directed tree with edge labels € X where

¢ The concatenation of the labels of
all paths from the root to a leaf just
give o(S).

e The labels of sibling edges from B
one node start with different
characters.

* Atomic tree

Termination Symbol $
No suffix must be prefix of another suffix.

Data Structures Il

Suffix Tree

Definition

A suffix tree T for a string S C X" is a compact suffix trie.
This means

¢ 7 has exactly n leaves numbered 1 to n.

e The concatenation of the labels from the root to a leaf i spells
out S,. (— all paths give 6(S))

e The labels of sibling edges from
one node start with different
characters.

¢ Every node except the root has
at least two children.
(— compact)

More Definitions

Paths and Labels
¢ A pathis a downwards connected sequence of edges.

¢ The label of a path is the concatenation of the edge labels
on the path.

e The path-label of node n is the concatenation of the edge
labels on the path to node n. (— path-label of leaf i is S;)

Reference pair (n, o) of s

n: node on the path to s

o.. concatenation of edge-labels fromnto s
s not necessarily a node

Canonical reference pair

n: last node on the path to s

A naive algorithm

Suffix tree for S
e Start: single edge S[1..n]$=S,$ — Tree T,
e Successive adding of S[i..n]$=S.$, i from 2 to n+1

- Find longest path from root in 7._; matching a prefix of S,.
- Matching ends at node n (eventually new created).
- Add new edge (n,i) labelled with unmatched suffix of S..

Time analysis
Inserting S, takes O(|S|) time — Complexity: O(n?)

Ukkonen’s Algorithm |

Proceeding

¢ Construction of suffix tree for string S in
O(n) via implicit suffix trees Z,..Z,
— true suffix tree T

e Start: O(n®) method to build 7
— optimization to linear time §
Q
o]

Implicit suffix trees
¢ Remove every occurrence of §.

¢ Re-establish suffix-tree conditions.
¢ 7. implicit suffix tree for S[1..i]

7., encodes all suffixes of S!)

9/24 (

Ukkonen’s Algorithm ||

Algorithm at a high level

Construct implicit suffix tree Z,.

Forifrom1ton-1{forjfrom1toi+1{

1. find end of path from root labelled SJj..i] in Z.

2. apply appropriate extension rule (S[j..i+1] in tree)
1. 3Jj..i] ends at leaf — add S(i+1) to edge label

2. No path from end of SJj..i] starts with S(i+1) — add new
leaf edge labelled S(i+1) and leaf node j

3. dpath from SJj..i] beginning with S(i+1) — do nothing
} \\extension S[1..5]

Rule 1%

H\phase gg5. 3
Rule 3 bﬁt}b

: Rule 2
Time S[4..5]°

11/24

Ukkonen’s Algorithm Il

Suffix Links

Definition

Suffix link (u, s(u)) is a pointer from
iInternal node u labelled xo to node
s(u) labelled a.

Single Extension Algorithm

1. Find first node u up from SJ[j-1..i] that has SI[j-1..i] S[j..i]
suffix link or is root (at most one edge up!)

2. If u#root: walk down from s(u) following path for o.
If u = root: walk down from root following path for Sj..i].

3. Apply appropriate extension rule — SJj..i]S(i+1) in the tree

4. If new internal node w was created, create suffix link (w, s(w))
Time complexity

Worst case not yet improved: O(n3)

Ukkonen'’s Algorithm |V

Problem:
Down-walking along path labelled a costs O(|a|) time

Trick 1: Skip/Count

e Skip edge if [unmatched part of a| > |edge labell

¢ Time complexity
Traversing of edge O(1) — down-walk in O(#nodes)
— 1 phase in O(n) — algorithm in O(n?)

Edge-label compression

e Time for algorithm > size of its output (®(n?))

— different representation scheme for edge labels
¢ Pair of indices (i,))

| beginning position of substring in S

j ending position of substring in S

Ukkonen’s Algorithm V

Trick 2: Rule 3 is a show stopper

e If rule 3 applies for SJ[j..i] it also applies for any S[k..i], k>j
(Implicit extensions)

¢ [End phase after first extension |* where rule 3 applies

Trick 3: Once a leaf, always a leaf

e | = # Initial extensions in phase i where rule 1 or 2
applies — J; < Ji,

¢ |nphasei+1do

Label new created leaf-edges (n,e) — S[n..i+1]
(e global symbol denoting current end)

In extensions 1 to j, only increment e — rule 1 for leaf-edges

Combination

In phase i+1 explicit extensions only from
e« Extension j+1 = active point to
e Extension |* = end point

14/24

Ukkonen’s Algorithm V|

Single phase algorithm

1. Increment index e to i+1

2. Explicitly compute successive extensions (using SEA)
starting at ji+1 until first extension |* where rule 3 applies
(or until all extensions are done)

3. Setj+11t0j*-1 to prepare for next phase.

Time complexity

Suffix Links + Edge Compression + Trick 1-3 allows
construction of suffix tree for String S in O(|S]).

Creating the true suffix tree

Conversion in O(|S|).

1. Add termination symbol $ to end of S.

2. Let Ukkonen’s algorithm continue with extended string.
3. Replace each index e on every leaf edge with n.

McCreight's Algorithm |

Definitions

¢ 7 intermediate suffix tree encoding suffixes S, to S |

¢ McHead(i): longest prefix of S; that is also prefix of S, j<I
¢ McTail(i): S-McHead(i)

Proceeding

The “Algorithm M” inserts suffixes in order from S, to S,
7i—_> 7i'+1

¢ Find end of path labelled McHead(i)

¢ n = node labelled McHead(i) (eventually new created)
¢ Add new leaf i and new edge (n,i) labelled McTail(i)

More efficiency
¢ [Edge compression, suffix links
¢ |emma: McHead(i-1) = x0 = 0 is a prefix of McHead(i)

McCreight's Algorithm Il

Step i of “Algorithm M”

1.

o Ok Wb

Time complexity
Rescanning and scanning

Starting from McHead(i-1)=Ea3 walk upwards till first
node a (labelled &a); if a = root go to 3.

Follow suffix link to node c (labelled o)

“Rescanning”: walk downwards along path labelled 3
using skip/count trick — node d

Add suffix link (a,d)

“Scanning”: search downwards along path labelled y
(unknown length!) — node e

Add leaf i and edge (e,i) McHead(i-1) Ca

o McHeadl(i)

suffix link B
d

Y
2
McTail(i)

in O(1) — O(n)

Weliner's Algorithm |

Definitions

e Wi suffix tree for S=5]i..n]$

* WHead(i): longest prefix of S; that is also prefix of S;,j>i
Proceeding

Build W, ., = edge (root, n+1) labelled $

Forifromnto 1do
¢ Find WHead()) in W,
¢ W = node labelled WHead(j) (eventually new created)
¢ (Create new leaf j and edge (w,j) labelled

S[j..n]-WHead())
More efficiency

¢ Edge compression
e 2 vectors: Indicator Vector Z (x) and Link Vector £ (x)

17/24

Weliner's Algorithm I

The Vectors
¢ 7 (x)=1 <« ulabelled o & 3 partial path in W labelled xa
¢ L[, (X)=FU <« Ulabelled xa & u labelled o; otherwise L (x)=null

Vector Usage

W1 — Wi -y
e Start at leaf i+1, find first u with '(
Z.(S()))=1 (u labelled o) u

e (Continue till first u’ with
L(S(i)) = null (I = [u-u’|)

u

1+
u, u’ don’t exist - WHead(i)=¢

u, u’” exist - WHead(i)=S(i)aa & WHead(i) ends |. chars below U
u exists, u’ doesn't - WHead(i) ends |, chars below root

Time complexity
Head (i) found in O(1) — Complexity of algorithm O(n)

Exact string matching

T ——
Exact string matching

¢ Find all occurrences for pattern P in text T:
Build suffix tree in O(|T|) and match P along unique path O(|P]).
- P exhausted: numbers of leaves below are starting points for P

- mismatch: P does not occur

¢ Comparison with KMP and BM algorithms
- P and T fix; P fix — same time and space bound
- fixed T and varying Ps — O(|T|) + £-O(|P|+|#occurrences of P|)
— vastly better performance

Exact set matching
e Task: Find all k occurrences of a set of strings Pintext T

® | Approach Tree |Search | Total
Aho-Corasick | OZ|P|) | O(T]) | OE|P|+|T|+k)
Suffix Trees | O([T]) | OEIP|) | OE|P|+|T|+k)

Longest common substring

Generalized suffix tree

¢ Definition:
Tree which represents the suffixes of a set {S,,S,,...S,}

e Construction: Variation of Ukkonen’s algorithm
1. Build tree for S,$
2. Match S,$ against path in tree, first mismatch S[i+1]
— tree encodes ¢(S,) and implicitly o(S,[1..])
3. Resume Ukkonen’s algorithm on S, in phase i+1
4. Repeat for each string

Longest common substring (Ics)

¢ Proceeding:
- Build generalized suffix tree for S, and S,
- Mark internal nodes v with 1(2) if leaf in subtree of v represents
suffix of S,(S,)
- Search node marked 1 and 2 with longest path-label (= Ics)

ZUZ ¢ Time complexity: O |S))

String Assembly |

Introduction
¢ Application: DNA Analysis

¢ Definition: Superstring Problem
For a given set of strings {S;, S, ...S,} find superstring
S which contains every S; as substring.

¢ Solution: Blending
Assembling of two strings S, Sj as follows:
Find longest suffix a of S; which is prefix of S, and create
new string blend (S;,S)) = S;- o + §; = S; - 0OV(S;,)) + S

St S5 o f

¢ GREEDY-Heuristic with Suffix Trees (Kosaraju/Delcher)
— approximate solution for smallest S

String Assembly |

GREEDY-Heuristic with Suffix Trees

¢ Generalized suffix tree 7:
- leaf numbers: (i, p) — suffix S,[p..|S;]]
- implicit — $ omitted, internal nodes can be leaves
- substrings of other strings and copies of identical
strings removed

e Arrays & Sets:
- chain — already blended strings
- wrap — unavailable suffixes and prefixes
- §, — suffixes available at node u
initially S, = {ilu has leaf number (i,1)}
- P, — prefixes available at node u
initially P, = {ilu has leaf number (i,d), d>1}

String Assembly Il

Proceeding
1. Find node u with largest string-depth
2. Find pair(i,j) with
e icS,jeP,
¢ chain(i) = 0, wrap(i) #j
3. Discard all i from S, with chain(i) # 0
4. Removeifrom S, and j from P, and set
e chain(i) =]
e wrap(wrap(i)) = wrap (j), wrap(wrap(j)) = wrap (i)
5. Repeat 2. — 4. until no further blends are feasible
6. Union remaining P, to set P of u’s parent
/. Discard S, and remove u from string-depth-order
8. Goto 1.
9. Generate superstring from chain array

Conclusion

Suffix Trees
< Implementation Details

Comparison of the algorithms

¢ Time
e Space
e Comprehensibility

Applications

