
Winter School St. PetersburgWinter School St. Petersburg

Suffix Trees

Katharina Pentenrieder

2/24

IntroductionIntroduction
Usage
� Solving many string problems in linear time

History
String algorithms
� Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

Suffix tree algorithms
– 1973 P.Weiner: first linear construction algorithm
– 1976 E.M.McCreight:

more space-efficient algorithm
– 1993 E. Ukkonen: conceptually different approach

3/24

OutlineOutline
1. Data Structures

� Suffix tries and trees

2. Construction Algorithms
Naïve algorithm
Algorithms of Weiner, McCreight & Ukkonen

3. Examples of Use
Exact string matching problems
Longest common substring
Assembly of Strings

4. Conclusion

4/24

Data Structures IData Structures I
Preliminaries

Notations

set of all suffixes of S
character at position i in S
empty string ε
suffix of S that starts at position i
prefix of S that ends at position i
substring of S

Definitions
S[i..j]=sisi+1…sj

S[1..i]
Si=S[i..n], 1� i � n+1

Sn+1

S(i)
σ(S)={Si|1 � i � |S|}

length of S|S|=npossibly empty stringsα, β, γ
arbitrary stringS=s1s2…snfinite, non empty alphabetΣ

5/24

Data Structures IIData Structures II
Suffix Trie
Definition
A suffix trie for a string S � Σn is a
directed tree with edge labels � Σ where

The concatenation of the labels of
all paths from the root to a leaf just
give σ(S).
The labels of sibling edges from
one node start with different
characters.
Atomic tree

Termination Symbol $
No suffix must be prefix of another suffix.

6/24

Data Structures IIIData Structures III
Suffix Tree
Definition
A suffix tree ��for a string S � Σn is a compact suffix trie.
This means

��has exactly n leaves numbered 1 to n.
The concatenation of the labels from the root to a leaf i spells
out Si. (� all paths give σ(S))
The labels of sibling edges from
one node start with different
characters.
Every node except the root has
at least two children.
(� compact)

7/24

More DefinitionsMore Definitions
Paths and Labels

A path is a downwards connected sequence of edges.
The label of a path is the concatenation of the edge labels
on the path.
The path-label of node n is the concatenation of the edge
labels on the path to node n. (� path-label of leaf i is Si)

Reference pair (n, αααα) of s
n: node on the path to s
α: concatenation of edge-labels from n to s
s not necessarily a node
Canonical reference pair
n: last node on the path to s

8/24

A naA naïïve algorithmve algorithm
Suffix tree for S

Start: single edge S[1..n]$=S1$ � Tree �1

Successive adding of S[i..n]$=Si$, i from 2 to n+1
�i-1 � �i

- Find longest path from root in �i-1 matching a prefix of Si.
- Matching ends at node n (eventually new created).
- Add new edge (n,i) labelled with unmatched suffix of Si.

Time analysis
Inserting Si takes �(|Si|) time � Complexity: �(n2)

9/24

Ukkonen’s Algorithm IUkkonen’s Algorithm I
Proceeding

Construction of suffix tree for string S in
�(n) via implicit suffix trees �1..�n
� true suffix tree �
Start: �(n3) method to build �
� optimization to linear time

Implicit suffix trees
Remove every occurrence of $.
Re-establish suffix-tree conditions.
�i implicit suffix tree for S[1..i]

(�n encodes all suffixes of S!)

10/24

Ukkonen’s Algorithm IIUkkonen’s Algorithm II
Algorithm at a high level
Construct implicit suffix tree �1.
For i from 1 to n-1 { for j from 1 to i+1 {
1. find end of path from root labelled S[j..i] in �i

2. apply appropriate extension rule (S[j..i+1] in tree)
1. S[j..i] ends at leaf � add S(i+1) to edge label
2. No path from end of S[j..i] starts with S(i+1) � add new

leaf edge labelled S(i+1) and leaf node j
3. 	 path from S[j..i] beginning with S(i+1) � do nothing

} \\extension
} \\phase

Time
�(n3)

11/24

Ukkonen’s Algorithm IIIUkkonen’s Algorithm III

Single Extension Algorithm
1. Find first node u up from S[j-1..i] that has

suffix link or is root (at most one edge up!)
2. If u ≠ root: walk down from s(u) following path for α.

If u = root: walk down from root following path for S[j..i].
3. Apply appropriate extension rule � S[j..i]S(i+1) in the tree
4. If new internal node w was created, create suffix link (w, s(w))
Time complexity
Worst case not yet improved: �(n3)

Suffix Links
Definition
Suffix link (u, s(u)) is a pointer from
internal node u labelled xα to node
s(u) labelled α.

12/24

Ukkonen’s Algorithm IVUkkonen’s Algorithm IV
Problem:
Down-walking along path labelled α costs �(|α|) time

Trick 1: Skip/Count
Skip edge if |unmatched part of α| > |edge label|
Time complexity
Traversing of edge �(1) � down-walk in �(#nodes)
� 1 phase in �(n) � algorithm in �(n2)

Edge-label compression
Time for algorithm
 size of its output (Θ(n2))
� different representation scheme for edge labels
Pair of indices (i,j)
i beginning position of substring in S
j ending position of substring in S

13/24

Ukkonen’s Algorithm VUkkonen’s Algorithm V

Trick 2: Rule 3 is a show stopper
If rule 3 applies for S[j..i] it also applies for any S[k..i], k>j
(Implicit extensions)
End phase after first extension j* where rule 3 applies

Trick 3: Once a leaf, always a leaf
ji = # initial extensions in phase i where rule 1 or 2
applies � ji � ji+1
In phase i+1 do

- Label new created leaf-edges (n,e) � S[n..i+1]
(e global symbol denoting current end)

- In extensions 1 to ji only increment e � rule 1 for leaf-edges

Combination
In phase i+1 explicit extensions only from

Extension ji+1 = active point to
Extension j* = end point

14/24

Ukkonen’s Algorithm VIUkkonen’s Algorithm VI

Single phase algorithm
1. Increment index e to i+1
2. Explicitly compute successive extensions (using SEA)

starting at ji+1 until first extension j* where rule 3 applies
(or until all extensions are done)

3. Set ji+1 to j*-1 to prepare for next phase.

Time complexity
Suffix Links + Edge Compression + Trick 1-3 allows
construction of suffix tree for String S in �(|S|).

Creating the true suffix tree
Conversion in �(|S|).
1. Add termination symbol $ to end of S.
2. Let Ukkonen’s algorithm continue with extended string.
3. Replace each index e on every leaf edge with n.

15/24

McCreight’s Algorithm IMcCreight’s Algorithm I

Definitions
�i: intermediate suffix tree encoding suffixes S1 to Si-1

McHead(i): longest prefix of Si that is also prefix of Sj, j<I
McTail(i): Si-McHead(i)

Proceeding
The “Algorithm M” inserts suffixes in order from S1 to Sn.
�i � �i+1

Find end of path labelled McHead(i)
n = node labelled McHead(i) (eventually new created)
Add new leaf i and new edge (n,i) labelled McTail(i)

More efficiency
Edge compression, suffix links
Lemma: McHead(i-1) = xδ � δ is a prefix of McHead(i)

16/24

McCreight’s Algorithm IIMcCreight’s Algorithm II

Step i of “Algorithm M”
1. Starting from McHead(i-1)=ξαβ walk upwards till first

node a (labelled ξα); if a = root go to 3.
2. Follow suffix link to node c (labelled α)
3. “Rescanning”: walk downwards along path labelled β

using skip/count trick � node d
4. Add suffix link (a,d)
5. “Scanning”: search downwards along path labelled γ

(unknown length!) � node e
6. Add leaf i and edge (e,i)

Time complexity
Rescanning and scanning

in �(1) � �(n)

17/24

Weiner’s Algorithm IWeiner’s Algorithm I

Definitions
�i: suffix tree for Si=S[i..n]$

WHead(i): longest prefix of Si that is also prefix of Sj,j>i

Proceeding
Build �n+1 = edge (root, n+1) labelled $
For i from n to 1 do

Find WHead(j) in �j+1
w = node labelled WHead(j) (eventually new created)
Create new leaf j and edge (w,j) labelled
S[j..n]-WHead(j)

More efficiency
Edge compression
2 vectors: Indicator Vector �u(x) and Link Vector
u(x)

18/24

Weiner’s Algorithm IIWeiner’s Algorithm II

The Vectors
�u(x)=1 � u labelled α & 	 partial path in � labelled xα

u(x)=� û � û labelled xα & u labelled α; otherwise
u(x)=null

Vector Usage
�i+1 ��i:

Start at leaf i+1, find first u with
�u(S(i))=1 (u labelled α)

Continue till first u’ with

u’(S(i)) ≠ null (li = |u-u’|)

- u, u’ don’t exist ���Head(i)=ε
- u, u’ exist � WHead(i)=S(i)α & WHead(i) ends li chars below û
- u exists, u’ doesn’t � WHead(i) ends li chars below root

Time complexity
Head (i) found in �(1) ��Complexity of algorithm �(n)

19/24

Exact string matchingExact string matching
Exact string matching

Find all occurrences for pattern P in text T:
Build suffix tree in �(|T|) and match P along unique path �(|P|).
- P exhausted: numbers of leaves below are starting points for P
- mismatch: P does not occur

Comparison with KMP and BM algorithms
- P and T fix; P fix � same time and space bound
- fixed T and varying Ps ��(|T|) + ΣP�(|P|+|#occurrences of P|)
� vastly better performance

Exact set matching
Task: Find all k occurrences of a set of strings � in text T

*

�(Σ|P|+|T|+k)

�(Σ|P|+|T|+k)

Total

�(|T|)�(Σ|P|)Aho-Corasick

�(Σ|P|)�(|T|)Suffix Trees

SearchTreeApproach

20/24

Longest common substringLongest common substring
Generalized suffix tree

Definition:
Tree which represents the suffixes of a set {S1,S2,…Sn}
Construction: Variation of Ukkonen’s algorithm
1. Build tree for S1$
2. Match S2$ against path in tree, first mismatch S[i+1]
� tree encodes σ(S1) and implicitly σ(S2[1..i])

3. Resume Ukkonen’s algorithm on S2 in phase i+1
4. Repeat for each string

Longest common substring (lcs)
Proceeding:

- Build generalized suffix tree for S1 and S2
- Mark internal nodes v with 1(2) if leaf in subtree of v represents

suffix of S1(S2)
- Search node marked 1 and 2 with longest path-label (= lcs)
Time complexity: �(Σ |Si|)

21/24

String Assembly IString Assembly I
Introduction

Application: DNA Analysis
Definition: Superstring Problem
For a given set of strings {S1, S2, …Sn} find superstring
S which contains every Si as substring.
Solution: Blending
Assembling of two strings Si, Sj as follows:
Find longest suffix α of Si which is prefix of Sj and create
new string blend (Si,Sj) = Si - α + Sj = Si - ov(Si,Sj) + Sj

GREEDY-Heuristic with Suffix Trees (Kosaraju/Delcher)
� approximate solution for smallest S

22/24

String Assembly IIString Assembly II
GREEDY-Heuristic with Suffix Trees

Generalized suffix tree ����:
- leaf numbers: (i, p) � suffix S1[p..|S1|]
- implicit � $ omitted, internal nodes can be leaves
- substrings of other strings and copies of identical

strings removed
Arrays & Sets:
- chain � already blended strings
- wrap � unavailable suffixes and prefixes
- Su � suffixes available at node u

initially Su = {i|u has leaf number (i,1)}
- Pu � prefixes available at node u

initially Pu = {i|u has leaf number (i,d), d>1}

23/24

String Assembly IIIString Assembly III
Proceeding
1. Find node u with largest string-depth
2. Find pair(i,j) with

i � Su, j � Pu

chain(i) = 0, wrap(i) ≠ j
3. Discard all i from Su with chain(i) ≠ 0
4. Remove i from Su and j from Pu and set

chain(i) = j
wrap(wrap(i)) = wrap (j), wrap(wrap(j)) = wrap (i)

5. Repeat 2. – 4. until no further blends are feasible
6. Union remaining Pu to set P of u’s parent
7. Discard Su and remove u from string-depth-order
8. Goto 1.
9. Generate superstring from chain array

24/24

ConclusionConclusion
Suffix Trees
� Implementation Details

Comparison of the algorithms
Time
Space
Comprehensibility

Applications

