
Bounded Treewidth Graphs – A Survey
German Russian Winter School

St. Petersburg, Russia

Andreas Krause – krausea@cs.tum.edu
Technical University of Munich

February 12, 2003

This survey gives an introduction to the class of bounded treewidth graphs,
for which many NP-complete problems can be solved efficiently. The concept
of a tree decomposition is explained. Subclasses of the bounded treewidth graphs
are identified. Results about finding tree decompositions are summarized. Some
problems which are efficiently solvable on bounded treewidth graphs are listed
and algorithms for two of them – finding maximum independent sets and the
calculation of the Tutte polynomial are sketched.

1 Introduction

For computationally complex problems, e.g.
NP-complete problems, it is important to
know, for which problem instances efficient
algorithms are available. This survey shows,
how important NP-complete graph problems
can be solved efficiently if the graph belongs
to the class of bounded treewidth graphs.

Since in general trees are algorithmically
comfortable to deal with, graph classes are
sought which behave similarly to trees. The
class of bounded treewidth graphs turns out
to show similar properties.

1.1 Treeminology

In the following, the term graph means a
pair G = (V,E) of vertices V and edges E,
E ⊆ V × V where E is symmetric, i.e. the

graph is undirected. Graphs don’t need to be
simple, loops and parallel edges are allowed,
i.e. E may be a multiset.

Definition 1. A tree decomposition of a
graph G = (V,E) is a pair ({Xi|i ∈ I}, T =
(I, F )) where T is a tree with nodes Xi,
Xi ⊆ V for all i ∈ I satisfying

•
⋃
i∈I

Xi = V

• For all edges (v, w) ∈ E there exists an
i ∈ I with v ∈ Xi, w ∈ Xi

• For all i, j, k ∈ I it holds that if j
is on the path from i to k in T then
Xi ∩Xk ⊆ Xj

The width of a tree decomposition ({Xi|i ∈
I}, T = (I, F )) is defined to be

max
i∈I

|Xi| − 1

1



2 “Easy” problems for bounded treewidth graphs

and the treewidth of a graph G is the min-
imum width over all tree decompositions of
G.

Figure 1 shows an example of graph with a
tree decomposition.

1.2 Which graphs have bounded
treewidth?

Several classes of graphes, which are impor-
tant in practice, have been shown to have con-
stant bounded treewidth, among them are

• Trees / Forests (treewidth 1)
• Series parallel networks (treewidth 2)
• Outerplanar graphs (treewidth 2)
• Halin graphs (treewidth 3)

It should be noted that, while the class of out-
erplanar graphs (graphs with an embedding in
the plane such that all vertices can be placed
on the outward face) has bounded treewidth,
the class of planar graphs in general doesn’t
have bounded treewidth, neither has the class
of bipartite graphs.

The complete graph Kn with n vertices
has treewidth n − 1, and the following result
shows, that any graph containing a k-clique
has at least treewidth k − 1:

Lemma 2. Let G = (V,E) be a graph and H
be a minor of G (a graph resulting from G by
edge removal and edge contraction). Then

treewidth(H) ≤ treewidth(G)

1.3 Applications

According to [Bod93], graphs with bounded
treewidth occur frequently in practical prob-
lems; among them are

• Expert systems – Graphs modelling cer-
tain types of expert systems have been
observed to have small treewidth, which

allows otherwise time-consuming statis-
tical computations for reasoning with
uncertainty.

• Evolution theory – In phylogeny, one
wants to construct evolution trees for
species, their characteristics, thereby
extrapolating possible extinct ancestors.
One variant of these clustering tech-
niques is the perfect phylogeny problem.
This can be stated as a graph problem
with a vertex-colored graph. It can be
shown that a necessary condition for the
solution is that the treewidth of G is
smaller than the number of colors.

• Natural language processing – It has
been observed, that dependency graphs
of the major syntactic relations among
words typically have small tree-width,
which can be exploited for language pro-
cessing.

2 “Easy” problems for bounded
treewidth graphs

In this section, a short summary is given on
problems, for which in general no determinis-
tic polynomial time algorithm is known, but
which turn out to be efficiently solvable for
bounded treewidth graphs. Many of the algo-
rithms will even run in linear time.

2.1 Finding maximum independent
sets

A well knownNP-complete problem is to find
for a graph G = (V,E) a maximum inde-
pendent set, that is a subset W ⊆ V of ver-
tices such that for all v, w ∈ W it holds that
(v, w) /∈ E.

Let ({Xi|i ∈ I}, T = (I, F )) be a tree de-
composition of G of width k. From this tree
decomposition one can easily derive a rooted

2



2 “Easy” problems for bounded treewidth graphs

Figure 1: Tree decomposition of width 2 for example graph G. This is the minimum possible
treewidth, since G contains a K3 as a minor.

binary tree decomposition of the same width.
Define for all i ∈ I:

Yi = {v ∈ Xj |j = i or j is a descendant of i}

and let G [Yi] denote the vertex induced sub-
graph of G with vertices Yi.

The key observation is that if one wants
to extend a maximum independent set Wi of
G [Yi] to a maximum independent set W of G,
only vertices in Xi, particularly in the sepa-
rator Xi ∩Xfather(i) have to be considered. Of
the vertices in Yi \ Xi, only their number is
important.

This observation can be utilized in a dy-
namic programming approach which gives a
linear time algorithm for the calculation of a
maximum independent set of G. For i ∈ I
and Z ⊆ Xi define si(Z) to be the size of a
maximum independent subset in G [Yi] with
W ∩ Xi = Z, or −∞ if no such set exists.
For leaf nodes Xi, all 2|Xi| values of si(Z) are
found by:

si(Z) =

{
|Z|, if ∀v, w ∈ Z : (v, w) /∈ E

−∞, if ∃v, w ∈ Z : (v, w) ∈ E

For internal nodes i and children j and k and
if ∀v, w ∈ Z : (v, w) /∈ E then

si(Z) = max
Z∩Xj=Z′∩Xi

Z∩Xk=Z′′∩Xi


sj(Z ′) + sk(Z ′′)+
|Z ∩ (Xi \Xj \Xk)|
−|Z ∩Xj ∩Xk|


and si(Z) = −∞ if ∃v, w ∈ Z : (v, w) ∈ E.
Hereby, Z ′ and Z ′′ are defined as Z but for
the left and right subtree of i resp. If i has no
left (right) son, then Z ′ (Z ′′) is the empty set.

Theorem 3. The above algorithm generates
a maximum independent set for a graph G =
(V,E) if given a tree decomposition of width
k in time

(O)(n · 23k)

where n = |V |.

Proof: Simple induction by the structure
of the decomposition tree, for details see
[Bod93].

Remark 4. 1. The independent set itself
can be reconstructed by interpretation
of the dynamic programming tables si.

3



3 Finding tree decompositions

2. Although the running time of the algo-
rithm is linear in the number of nodes,
the complexity factor is very large.
This is typical for algorithms exploiting
bounded treewidth.

3. The above technique can be generalized
to many other problems. The key idea
is: n tables carry information about a
bounded number (in k) of equivalence
classes of partial solutions.

2.2 A language for graph problems

Many graph problems can be formulated
within monadic second order logic, i.e. by
merely using logical operations (∨,∧,¬),
quantification (∃,∀), membership tests (∈,⊆)
and adjacancy tests ((v, w) ∈ E). Courcelle
proved a powerful result about efficient solv-
ability of such problems for the class of graphs
with bounded treewidth:

Theorem 5 (Courcelle). Any graph prob-
lem expressible by monadic second order logic
can be solved in linear time for bounded
treewidth graphs with given tree decomposi-
tions

Proof: See [CM93].

Several extensions additionally allow solv-
ing certain optimization problems. As an ex-
ample, the monadic second order logic expres-
sion of the graph three-coloring problem is:

∃W1 ⊆ V : ∃W2 ⊆ V : ∃W3 ⊆ V :
∀v ∈ V : (v ∈ W1 ∨ v ∈ W2 ∨ v ∈ W3) ∧
∀v ∈ V : ∀w ∈ V : (v, w) ∈ E ⇒
(¬(v ∈ W1 ∧ w ∈ W1) ∧ ¬(v ∈ W2 ∧
w ∈ W2) ∧ ¬(v ∈ W3 ∧ w ∈ W3))

2.3 Other solvable problems for
bounded treewidth graphs

There are other problems, which are in gen-
eral computationally complex and which turn

out to be efficiently solvable for graphs with
bounded treewidth. The techniques used dif-
fer from the dynamical programming ap-
proach above. These problems include:

• Graph isomorphism – Given two graphs
H and K, does there exist a permuta-
tion of the vertices of H s.t. the per-
muted graph H ′ is identical to K?

• Recognition of graph classes – Using the
deep graph theoretic results on graph
minors by Seymour and Robertson, one
can prove that every graph class which
doesn’t contain all planar graphs and
which is closed under taking minors can
be recognized in linear time.

• Tutte polynomial and related problem –
The Tutte polynomial of a graph G al-
lows to determine important combina-
torial quantities (e.g. no. of spanning
trees, chromatic polynomial, nowhere-
zero flows,. . . ) by specializations. For
general graphs, it is NP-hard to com-
pute the Tutte polynomial; for graphs
with bounded treewidth , a polynomial
algorithm is sketched in section 4.

3 Finding tree decompositions

To utilize that a given graph has bounded
treewidth, it is important to know a (optimal)
tree decomposition. For general graphs it can
be shown, that it is a NP-complete problem
to determine their treewidths. However, a the-
orem of Bodlaender states:

Theorem 6 (Bodlaender). For all posi-
tive integers k there exists a linear-time algo-
rithm that tests whether a given graph G has
treewidth at most k, and if so, outputs a tree
decomposition of G of width at most k.

The important point is, that k is being re-
garded as a constant and not belonging to the

4



4 The Tutte polynomial

problem instance. Additionally there are poly-
nomial time approximation algorithms to de-
termine the treewidth of a given graph which
have a performance ratio of O(log n).

3.1 Complexity of determining
treewidth for special graph classes

Although the general problem of determin-
ing the treewidth of general graphs is NP-
complete , there are certain graph classes, for
which their treewidth can be calculated effi-
ciently.

• Linear time – For each graph class with
bounded tree width, its treewidth can
be computed in linear time.

• Polynomial time – There exist polyno-
mial time algorithms to determine the
treewidth of e.g. chordal graphs, inter-
val graphs and circle graphs.

• NP-complete problem – The prob-
lem of determining the treewidth is
NP-complete even for e.g. graphs
with bounded degree and for bipartite
graphs.

• Open problem – Whether the treewidth
of planar graphs can be found in poly-
nomial time is still an open problem.

4 The Tutte polynomial

The Tutte polynomial is a result of algebraic
graph theory; it is an invariant derived from
a graphs spanning trees and the associated
quantities of fundamental cycles and cocycles.
Specializations of the Tutte polynomial allow
to compute important combinatorial quanti-
ties of a graph, e.g. its chromatic polynomial
(and thus its chromatic number), the number
of spanning trees, nowhere-zero-flows, the re-
liability.

4.1 Definitions

Some terminology has to be established.

Definition 7. Let G = (V,E) a graph, ≤ a
total ordering on the edges E and let T be a
spanning tree of G.

An edge e ∈ G \ T is called externally ac-
tive if it is the largest edge in the unique cycle
T ∪ {e}

ea(T ) = |{e ∈ G \ T |e externally active}|

An edge e ∈ T is called internally active
if it is the largest edge in the unique cocycle
(G \ T ) ∪ {e}

ia(T ) = |{e ∈ G \ T |e internally active}|

A cocycle C ′ ⊆ E in G is a minimal discon-
necting subset of G with edges contained in
C ′.

Figure 2 gives an examples of the above def-
initions.

Definition 8. The Tutte polynomial of a
graph G and a total ordering ≤ on its edges
is defined as

t(G) = t(G; ≤; x, y) =
∑
T⊆G

T sp. tree

xia(T )yea(T )

Theorem 9 (Tutte). The definition of the
Tutte polynomial is independent of the total
ordering ≤, i.e. it is well-defined.

Proof: Is given in [Big93].

There is also a recursive characterization of
the Tutte polynomial:

Theorem 10. The Tutte polynomial of a
graph G = (V,E) can be found recursively:
If E = ∅ then t(G) = 1; if e ∈ E then:
(R1) t(G) = t(G \ {e}) + t(G/{e})

if e is not a loop or a bridge
(R2) x · t(G \ {e}), if e is a bridge
(R3) y · t(G \ {e}), if e is a loop

5



4 The Tutte polynomial

Figure 2: An example of the above definitions. In (i) a graph G is given together with a
spanning tree T (bold red edges), a total ordering is given by edge weights. In (ii),
the cycle in T ∪ {4} consists of edges {2, 3, 4}. The largest edge is edge 4, thus 4
is externally active. In (iii), 5 is not externally active since 6 is the largest edge
in {2,3,5,6}. In (iv), the cocycle induced by edge 6 is {5, 6}, thus 6 is internally
active. In (v), the cocycle induced by 3 is {3,4,5}, thus 3 is not internally active.
It can easily be seen, that 1 is internally active, while 2 is not, thus ea(T ) = 1 and
ia(T ) = 2.

Proof: Is given in [BO92]

Hereby is G \ {e} the graph obtained from
G by removal of edge e and G/{e} the graph
obtained from G by contraction of edge e (re-
moval of edge e and identification of adjacent
vertices).

It can easily be seen that the naive calcu-
lation of the Tutte polynomial of a complete
graph by using the above recursion would take
exponential time in |E|. In general it has been
shown that evaluating the Tutte polynomial
for planar graphs at general points (excluding
some special conditions) is #P hard [Ver].

4.2 Divide and conquer

To utilize the tree decomposition of a graph
with bounded treewidth, one can use a di-
vide and conquer strategy as sketched below.
Let K = (V,E), H = (W,F ) be two graphs,
E ∩F = ∅ and G = K ∪H their graph union.
Call U = V ∩ W the separator of K and H
and set r = |U |. In the case r = 1, it can
be seen that t(G) = t(K) · t(H). For r ≥ 2,
Negami proved the validity of a splitting for-
mula which relates the Tutte polynomial of
G to Tutte polynomials derived from graphs
related to K and H.

6



4 The Tutte polynomial

4.3 Partition of the separator

Let Γ(U) be the lattice of partitions of U and
write P1 � P2 iff P2 is a refinement of P1, i.e.
every block of P1 is a union of blocks of P2.
The top of the lattice P 1 (the unique maxi-
mal element w.r.t. �) is the partition consist-
ing of |U | singleton blocks. For P1, P2 ∈ Γ(U)
let P1∧P2 denote their meet, i.e. the greatest
lower bound of P1 and P2. The r-th Bell num-
ber s(r) is the number of partitions in Γ(U).

The partition lattice Γ({1, 2, 3}). The arrows
denote P1 → P2 iff P1 � P2. Thus s(3) = 5.

For graph K and partition P ∈ Γ(U) let
K � P denote the graph obtained from K
by identification of vertices within the same
block of P . Figure 3 gives an example of such
an operation.

4.4 The splitting formula

Let K = (V,E), H = (W,F ) be two graphs,
E ∩ F = ∅ and G = K ∪ H, U = V ∩ W
and r = |U |. The splitting formula states,
that the Tutte polynomial of G can be calcu-
lated by simple matrix vector multiplication
(where the matrices and vertices are over the
ring of polynomials of two variables), if the
Tutte polynomials and number of connected
components of all graphs, which are obtained
from K and H by partition identification are
known (c(G) denotes the number of connected
components of graph G).

Theorem 11 (Negami). Let Tr, Cr be s(r)×
s(r) matrices,

(Tr)i,j = [(x− 1)(y − 1)]|P1∧P2|

(Cr)i,j = (y − 1)|P1|+|P2|−r · (T−1
r )i,j

and let kr, hr be s(r) vectors,

kr =

 (x− 1)c(K�P1)t(K � P1)
...

(x− 1)c(K�Ps(r))t(K � Ps(r))


hr =

 (x− 1)c(H�P1)t(H � P1)
...

(x− 1)c(H�Ps(r))t(H � Ps(r))


Then it holds that

t(G) = (x− 1)−c(G)kT
r Crhr

Proof: Given in [Neg87]

4.5 An algorithm for the Tutte
polynomial

This splitting formula gives rise to a di-
vide and conquer algorithm: Suppose a graph
G has binary tree decomposition ({Xi|i ∈
I}, T = (I, F )) and suppose, an internal node
i has two children j and k (the other cases are
simpler. Let V = Yls(i) and W = Yrs(i) ∪ Xi

with notation as in 2.1, let K and H ′ be the
vertex induced subgraphs of V and W resp.
and let H be the graph obtained from H ′ by
removal of all edges in the separator U . Then
K and H fulfill the requirements of Theorem
11 – the partition of G is shown in Fig. 4.
To determine vectors hr and kr, 2s(r) Tutte
polynomials and numbers of connected com-
ponents have to be determined. The maxi-
mal recursion depth is the height of the tree
T . The following lemma allows to bound this
height.

Lemma 12 (Bodlaender). Let k be con-
stant. Given a tree decomposition of width k
and a graph G with n vertices, one can com-
pute a rooted, binary tree decomposition of G
of depth at most 2dlog5/4(2n)e and width at
most r = 3k + 2 in time O(n) (using a se-
quential algorithm).

7



5 Further remarks

Figure 3: An example of the graph partition identification K � P

Since the recursion depth is logarithmic
in the number of vertices and the maximal
branching is bound by a constant (i.e. 2s(r +
1)), it can be seen, that the number of re-
cursive calls is polynomial in the number of
vertices. Within each recursive call, the ma-
trix vector multiplications are done in con-
stant time (in n) and the number of connected
components of all graphs can be determined
in polynomial time, i.e. in O(n2) time.

There are two cases left: interior nodes with
one son and leaf nodes. Suppose i is an inter-
nal node of T and j is its only child. Then let
V = Yj , W = Xi and K, H as above. For H,
vector hr can be computed using rules (R1),
(R2) and (R3), since the number of edges in
H is bounded by r2/2. For K, kr is calculated
recursively, which can be done in polynomial
time as shown above. For leaf nodes i, the
Tutte polynomial of G [Xi] can be calculated
in constant time using rules (R1), (R2) and
(R3).

A detailed formulation of the algorithm in-
cluding a proof of a polynomial running time
bound can be found in [And98]. In his paper,
the following theorem is established using the
algorithm sketched above:

Theorem 13 (Andrzejak). For each posi-
tive integer k there is an algorithm which de-
cides in linear time if a given graph G with
n vertices has treewidth at most k and if so,
computes the Tutte polynomial of G in total
time O(n2+7 log2(s(3k+3))).

Remark 14. Although the result of Andrzejak
gives a polynomial time algorithm for the cal-

culation of the Tutte polynomial for graphs
with bounded treewidth , the exponents of the
polynomial are very large. The table below
gives the exponent e(k) for fixed values of k

k 2 3 4 5
e(k) 97 145 197 252

5 Further remarks

5.1 Locally bounded treewidth

As the fact, that even sparse graphs such as
planar graphs do not have bounded treewidth,
one is interested in generalizations of the con-
cept of bounded treewidth. One such gen-
eralization is Eppsteins concept of locally
bounded treewidth (s. [Epp99]).

Definition 15. A graph G = (V,E) is said
to have locally bounded treewidth if for each
vertex v ∈ V the treewidth of the vertex in-
duced subgraph with vertices of distance less
than r is bounded by a function of r.

It can be shown, that planar graphs have
small locally bounded treewidth. Some algo-
rithms for graphs with bounded treewidth can
be extended to graphs with locally bounded
treewidth, e.g. an algorithm for subgraph iso-
morphism (s. [Haj]).

5.2 Tree decompositions and graph
minors

The concept of bounded treewidth and
tree decompositions was first introduced by

8



References

Figure 4: Partition of graph G in terms of its tree decomposition

Robertson and Seymour in their famous series
of papers about graph minors (s. [RS86]). In
1960, Kruskal proved that trees are quasi-well-
ordered (i.e. every infinite set of trees con-
tains trees T1 and T2 such that T1 is a mi-
nor of T2). Seymour and Robertson proved in
1990 that for a fixed integer k, graphs with

treewidth less than k are quasi-well-ordered.
This was an important step towards proving
their Minor Theorem, a deep result of graph
theory which states, that finite graphs are
quasi-well-ordered under the minor relation.
For an overview of the complex of Minor The-
ory, see [Die00].

References

[And98] A. Andrzejak. An algorithm for
the tutte polynomials of graphs of
bounded treewidth. Disc Math, 190,
1998.

[Big93] N. Biggs. Algebraic Graph Theory,
chapter 13, The Tutte Polynomial.
Cambridge Univ. Press, 2nd edition,
1993.

[BO92] T. Brylawski and J. Oxley. The
tutte polynomial and its applica-
tions, matroid applications. Encycl
Math Appl, 40:123–225, 1992.

[Bod93] H. L. Bodlaender. A tourist guide
through treewidth. Acta Cybern, 11,
1993.

[CM93] B. Courcelle and M. Mosbah.
Monadic second-order evaluations
on tree-decomposable graphs.
Theoret Comp Sci, 109:49–82, 1993.

[Die00] R. Diestel. Graphentheorie, chap-
ter 10., Minoren, Baeume und WQO,
pages 252–279. Springer, 2000.

[Epp99] D. Eppstein. Subgraph isomorphism
in planar graphs and related prob-
lems. J. Graph Algorithms Appl., 3,
1999.

[Haj] M. Hajiaghayi. Subgraph isomor-
phism, log-bounded fragmentation
and graphs of (locally) bounded
treewidth.

[Neg87] S. Negami. Polynomial invariants
of graphs. Trans Am Math Soc,
299:601–672, 1987.

[RS86] N. Robertson and P. D. Seymour.
Graph minors. ii. algorithmic aspects
of tree-width. Journ Alg, 7:309–322,
1986.

[Ver] V. L. Vertigan. The computational
complexity of tutte invariants for
planar graphs. to appear.

9


	Introduction
	Treeminology
	Which graphs have bounded treewidth?
	Applications

	``Easy'' problems for bounded treewidth graphs
	Finding maximum independent sets
	A language for graph problems
	Other solvable problems for bounded treewidth graphs

	Finding tree decompositions
	Complexity of determining treewidth for special graph classes

	The Tutte polynomial
	Definitions
	Divide and conquer
	Partition of the separator
	The splitting formula
	An algorithm for the Tutte polynomial

	Further remarks
	Locally bounded treewidth
	Tree decompositions and graph minors

	References

