Enumerating labeled trees

Definition: A labeled tree is a tree the vertices of which are assigned unique
numbers from 1 to n.

We can count such trees for small values of n by hand so as to conjecture a
general formula.
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So what Is the general formula?

Let Tn denote the number of labeled trees on n vertices. We now know the
following values for small n:

T2 =1 as there is only one tree on 2 vertices
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So what Is the general formula?

If we continue in this fashion, we will obtain the
following sequence:

1, 3, 16, 125,1296,16807,262144...
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Cayley’s theorem

Theorem (Cayley) There are n" “labeled trees on n
vertices.

1. Induction

Ac{l,2,..n},| A=k

F(A, n) - the set of forests on n vertices in which vertices from A
appear in different connected components(trees).

T,r - the number of forests of k trees, for which the vertices from A appear
" in different components.



Cayley’s theorem - Induction

A={n—-k+1ln—-k+2,.n}|Al=k

F(A, n) - the set of forests on n vertices in which vertices from A
appear in different connected components(trees).

T,r - the number of forests of k trees, for which the vertices from A appear
" in different components.
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2. Establishing a 1-1 correspondence between trees and
functions acting from 1..n into 1..n (Joyal)
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2. Establishing a 1-1 correspondence between trees and
functions acting from 1..n into 1..n (Joyal)
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left end

right end

(7,9,1,5,8,4) -> (1,5,7,8,4,9)
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2. Pruefer code

LLabeled tree -> (ay,a3,...,a,_7)
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2. Pruefer code
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Reversing the correspondence
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@® - end vertex
@ - inner vertex
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Other applications: the number of trees with a given
degree sequence

(n—2)!
(d-D'...-(d,, - D!




Other applications: the number of trees with a given
degree sequence

Let (dy.-.d,) be the degree sequence

(n—2)!
(di-Dt...-(d, -1)!

n—2 (n _1)n—k—1 -the number of trees in which vertex n has
k-1 degree k



Polya’s approach

n
X

TGx)=3 nt,
n!

n=1
T(X) is the generating function for the number of rooted trees with n vertices

Let ¢, be the number of connected graphs on n vertices enjoying a certain
property P.

1n-1(n 1 n—lck Co_i
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n
X

T(x)= ; nt, —
n!

n=1

T(X) is the generating function for the number of rooted trees with n vertices
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Lagrange inversion formula

o(s) = xy (p(s))
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The number of spanning trees of a directed graph

Def. A spanning tree of a graph G is its subgraph T that includes all the vertices
of G and is a tree

Def. A directed tree rooted at vertex n is a tree, all arcs of which are directed
towards the root
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Knuth’s theorem

Def. A function f is called a tree function of a directed tree T iff f(i)=] when j is
the first vertex on the way from i to the root.

Let c(H) denote the number of spanning trees of the graph H




Knuth’s theorem
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Theorem The number of spanning trees of a graph H arisen from a
directed cycle equals
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Knuth’s theorem

Theorem The number of spanning trees of a graph H arisen from a
directed cycle equals

;=1 s 83 sl
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sgl_l 'sfz_l Is the number of r by s bipartite graphs



Knuth’s theorem
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Matrix-Tree Theorem

Def. Let G be a directed graph without loops. Let {V{....,V,, } denote the
vertices of G, and {eq,...,e,,} denote the edges of G.

The incidence matrix of G is the n x m matrix A, such that
a; j =1, ifv; isthe head of e;
a; ; ==L if v; is the tail of e,

a; ; =0 otherwise

. 2 1 0 0 -1 0
-1 -1 0 0 -1
O +1 -1 0 O
O 0 +1 +1 +1



Matrix-Tree Theorem

Lemma. The incidence matrix of a connected graph on n vertices has the rank of
n-1

The reduced incidence matrix A of a connected graph G Is the matrix obtained
from the incidence matrix by deleting a certain row.

1 Z +1 0 0 -1 0
1 -1 0 0 -1
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Matrix-Tree Theorem

Lemma. The incidence matrix of a connected graph on n vertices has the rank of
n-1

The reduced incidence matrix A of a connected graph G Is the matrix obtained
from the incidence matrix by deleting a certain row.

+1 -1 O
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O 0 O




Matrix-Tree Theorem

Let Ap be the reduced incidence matrix of the graph G.

Theorem (Binet-Cauchy)
If R and S are matrices of size p by g and g by p, where p < g , then

det(RS) = x det(B) - det(C)

Theorem (Matrix-Tree Theorem)

If A is a reduced incidence matrix of the graph G, then the number of spanning trees
equals det(A4- A”)

det4 AT =3 (det B)?



Matrix-Tree Theorem

e1,...e, —Variables identified with edges of G
M(e)=[my]

m; =—ey,if e, joins i and j and i#j

m;; =sum if edges incident to i otherwise

Theorem M, (e) =>TI(T)

1 2
eptes —@ 0 4 5
My(e)=| —e; ej+ey+es —ep |=
O _82 €2+e3 4 3

= @1€9€q T €1€9€ +€1€9€r + 16364 + €1€2€x + €9€2€4 + €9€y€r + €76y
1€2€3 1€2¢€4 1€2¢5 1€3¢€4 1€3€5 2€3¢4 2€4¢5 3€4¢5
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M(e)=[my]

m; =—ep,if e, joins i and j and i#j

m;; =sum if edges incident to i otherwise

Theorem M, (e) =>TI(T)
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Matrix-Tree Theorem

Another derivation of Cayley’s formula:

n-1 -1 .. -1 -1
-1 n-1 ... -1 -1
-1 -1 -1 -1
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-1 -1 -1 -1 n-1
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Matrix-Tree Theorem

Another derivation of Cayley’s formula:

1 1 1 1
0n .. 00
00 . 0 0| =n"?
00 0 n O
00 0 0 »n




Matrix-Tree Theorem

Theorem (Matrix-Tree Theorem for directed graphs)

Let be variables representing the arcs of the graph. Let C = [Cij]
denote the n by n matrix in which —¢;; equals the sum of arcs directed
fromnode itonode jif i = j,and c;; equals the sum of all arcs
directed from node i to all other nodes.

Then

where the summation is over all spanning subtrees of G rooted at node n .

i 2 81 —61 O O
4 0 0 0 0
2 C, =
O — €9 €9 O
—€e4 —€; —e3 e3zteyteg




Matrix-Tree Theorem
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