Distance Halving Continuous Graphs

Matthias Ohst

Ferienakademie im Sarntal 2008 FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

September 30, 2008

1 Introduction

2 Continuous Graphs

- The Distance Halving Graph
- From Continuous Graphs to Discrete Graphs

3 Insertion of Peers and the Principle of Multiple Choice

- The Principle of Multiple Choice
- Two Lemmas Concerning the Principle of Multiple Choice
- Insertion of Peers

4 Routing in the Distance Halving Network

- Simple Algorithm
- Congestion Optimized Algorithm

5 Conclusion

Overview

1 Introduction

2 Continuous Graphs

- The Distance Halving Graph
- From Continuous Graphs to Discrete Graphs

3 Insertion of Peers and the Principle of Multiple Choice

- The Principle of Multiple Choice
- Two Lemmas Concerning the Principle of Multiple Choice
- Insertion of Peers

4 Routing in the Distance Halving Network

- Simple Algorithm
- Congestion Optimized Algorithm

5 Conclusion

- Goal: constant degree and logarithmic diameter (degree minimized network)
- *Viceroy*: complex network

2003: Moni Naor, Udi Wieder

- 2003: Moni Naor, Udi Wieder
- Put great emphasis on the principle of continuous graphs
 - Actually used in networks CAN and Chord
 - Formalized first by Naor and Wieder

- 2003: Moni Naor, Udi Wieder
- Put great emphasis on the principle of continuous graphs
 - Actually used in networks CAN and Chord
 - Formalized first by Naor and Wieder
- Graph: Pair (V, E) with $E \subseteq V \times V$
 - Discrete Graph: finite set V
 - Continuous Graph: infinite set V

Overview

1 Introduction

2 Continuous Graphs

- The Distance Halving Graph
- From Continuous Graphs to Discrete Graphs

3 Insertion of Peers and the Principle of Multiple Choice

- The Principle of Multiple Choice
- Two Lemmas Concerning the Principle of Multiple Choice
- Insertion of Peers

4 Routing in the Distance Halving Network

- Simple Algorithm
- Congestion Optimized Algorithm

5 Conclusion

• Vertex set:
$$V = [0, 1) \subseteq \mathbb{R}$$

• Edge set: $E \subseteq V \times V$

- Vertex set: $V = [0, 1) \subseteq \mathbb{R}$
- Edge set: $E \subseteq V \times V$
- Four types of edges $(x \in [0, 1))$:
 - Left edges: $(x, \frac{x}{2})$
 - Right edges: $(x, \frac{1}{2} + \frac{x}{2})$
 - Backward left edges: $(\frac{x}{2}, x)$
 - Backward right edges: $(\frac{1}{2} + \frac{x}{2}, x)$

- Vertex set: $V = [0, 1) \subseteq \mathbb{R}$
- Edge set: $E \subseteq V \times V$
- Four types of edges $(x \in [0, 1))$:
 - Left edges: $(x, \frac{x}{2})$
 - Right edges: $(x, \frac{1}{2} + \frac{x}{2})$
 - Backward left edges: $(\frac{x}{2}, x)$
 - Backward right edges: $(\frac{1}{2} + \frac{x}{2}, x)$
- Two edges (*x*₁, *y*₁), (*x*₂, *y*₂):
 - Both left edges or both right edges: $|y_1 y_2| = \frac{|x_1 x_2|}{2}$
 - Hence the name: *Distance Halving*
 - Conversely both backward left edges or both backward right edges: $|y_1 y_2| = 2|x_1 x_2|$

From Continuous Graphs to Discrete Graphs

- Continuous graphs: not directly useable because of the infinite number of vertices
- Partitioning the infinite vertex set V into finite many intervals (vertices of the discrete graph), called *segments*
- In our case: vertices (resp., segments) correspond to the peers in the network

From Continuous Graphs to Discrete Graphs

- Continuous graphs: not directly useable because of the infinite number of vertices
- Partitioning the infinite vertex set V into finite many intervals (vertices of the discrete graph), called *segments*
- In our case: vertices (resp., segments) correspond to the peers in the network
- Simplest case: peers will be placed randomly in the interval [0, 1)
- Peers: responsible for data from their positition up to the position of their successor in the interval [0, 1)
- Actually a modified positioning method is used in the Distance Halving network

From Continuous Graphs to Discrete Graphs (cont.)

- Positions of the *n* peers: x_1, \ldots, x_n in ascending order, i.e. $x_i < x_j$ for i < j
- The peer x_i , $1 \le i \le n$, is assigned the segment $s(x_i) = [x_i, x_{i+1})$

From Continuous Graphs to Discrete Graphs (cont.)

- Positions of the *n* peers: x₁,..., x_n in ascending order, i.e. x_i < x_j for i < j</p>
- The peer x_i , $1 \le i \le n$, is assigned the segment $s(x_i) = [x_i, x_{i+1})$
- There is an edge between two segments s(x_i) and s(x_j) iff points u ∈ s(x_i) and v ∈ s(x_j) exist such that (u, v) is an edge in the continuous graph
- In addition there are edges between adjacent segments (existence of a ring structure)

From Continuous Graphs to Discrete Graphs (cont.)

- Positions of the *n* peers: x₁,..., x_n in ascending order, i.e. x_i < x_j for i < j</p>
- The peer x_i , $1 \le i \le n$, is assigned the segment $s(x_i) = [x_i, x_{i+1})$
- There is an edge between two segments s(x_i) and s(x_j) iff points u ∈ s(x_i) and v ∈ s(x_j) exist such that (u, v) is an edge in the continuous graph
- In addition there are edges between adjacent segments (existence of a ring structure)
- Everey path in the continuous graph can be mapped to a path in the discrete graph
- Discretization of the graph described above

 → Distance Halving network

Degree of the Distance Halving Network

- The degree of the Distance Halving network is constant if the ratio of the biggest to the smallest interval is constant
- The edges of a segment map to an interval *I* which is for every type of edge at most twice as big as the segment itself

Degree of the Distance Halving Network

- The degree of the Distance Halving network is constant if the ratio of the biggest to the smallest interval is constant
- The edges of a segment map to an interval *I* which is for every type of edge at most twice as big as the segment itself
- Let ρ = max_{1≤i,j≤n} |s(x_i)| / |s(x_j)| be the ratio of the maximal segment size to the minimal segment size
- The interval *I* can only intersect with at most $2\rho + 1$ segments

- The degree of the Distance Halving network is constant if the ratio of the biggest to the smallest interval is constant
- The edges of a segment map to an interval *I* which is for every type of edge at most twice as big as the segment itself
- Let ρ = max_{1≤i,j≤n} |s(x_i)| / |s(x_j)| be the ratio of the maximal segment size to the minimal segment size
- The interval I can only intersect with at most $2\rho + 1$ segments
- A constant ratio of $\rho = 4$ can be achieved by the *principle of multiple choice*
- Increase of degree by a factor of nine by the discretization and hence a constant degree for the Distance Halving network

Overview

1 Introduction

2 Continuous Graphs

- The Distance Halving Graph
- From Continuous Graphs to Discrete Graphs

3 Insertion of Peers and the Principle of Multiple Choice

- The Principle of Multiple Choice
- Two Lemmas Concerning the Principle of Multiple Choice
- Insertion of Peers

4 Routing in the Distance Halving Network

- Simple Algorithm
- Congestion Optimized Algorithm

5 Conclusion

- Instead of choosing a random position in the [0, 1) ring at insertion, every peer looks first at $k = c \log n$ random positions $y_1, \ldots, y_k \in [0, 1)$
- For every position y_i the size a(y_i) of the segment s(x_{*}) which surrounds the point y_i is measured

- Instead of choosing a random position in the [0, 1) ring at insertion, every peer looks first at $k = c \log n$ random positions $y_1, \ldots, y_k \in [0, 1)$
- For every position y_i the size a(y_i) of the segment s(x_{*}) which surrounds the point y_i is measured
- The biggest of the segments found is chosen and the new peer is placed in the middle of that segment
- Always a relatively big segment is chosen, which implies that the distances are relatively uniformly

Lemma

If $n = 2^k$, $k \in \mathbb{N}$, peers are inserted in the [0, 1) ring using the principle of multiple choice, with high probability only segments of sizes $\frac{1}{2n}$, $\frac{1}{n}$ and $\frac{2}{n}$ are left.

If $n = 2^k$, $k \in \mathbb{N}$, peers are inserted in the [0, 1) ring using the principle of multiple choice, with high probability only segments of sizes $\frac{1}{2n}$, $\frac{1}{n}$ and $\frac{2}{n}$ are left.

Proof (first part):

- Segment sizes: powers of two
- It remains to show:
 - there are no segments of size less than $\frac{1}{2n}$
 - there are no segments of size greater than $\frac{2}{n}$

Let the biggest segment have the size $\frac{g}{n}$ (g may depend on n). Then after insertion of $\frac{2n}{g}$ peers all segments are smaller than $\frac{g}{2n}$.

Let the biggest segment have the size $\frac{g}{n}$ (g may depend on n). Then after insertion of $\frac{2n}{g}$ peers all segments are smaller than $\frac{g}{2n}$.

Proof:

- Consider a segment of size $\frac{g}{n}$
- If $c \log n$ possible positions are examined during the insertion of every peer and $\frac{2n}{g}$ peers are inserted, the expected number of hits X in such an interval is $E[X] = \frac{g}{n} \cdot \frac{2n}{g} \cdot c \log n = 2c \log n$

Proof (second part):

- With the Chernoff bound we get for $0 \le \delta \le 1$: $\Pr[X \le (1 - \delta)E[X]] \le n^{-\delta^2 c}$
- $\delta^2 c \ge 2$: all these intervals are hit at least $2(1 \delta)c \log n$ times
- $2(1 \delta) \ge 1$: every interval of minimum length $\frac{g}{n}$ will be divided with high probability

Proof (second part):

- If one applies the previous lemma for $g = \frac{n}{2}, \frac{n}{4}, \dots, 4$, then with high probability no interval of size $\frac{g}{n}$ exists
- The number of used peers is $4 + 8 + \dots + \frac{n}{4} + \frac{n}{2} \le n$

Proof (second part):

- If one applies the previous lemma for $g = \frac{n}{2}, \frac{n}{4}, \dots, 4$, then with high probability no interval of size $\frac{g}{n}$ exists
- The number of used peers is $4 + 8 + \dots + \frac{n}{4} + \frac{n}{2} \le n$
- After the last round there are no segments bigger than $\frac{2}{n}$
- Since here only $O(\log n)$ events have to arrive, the statement holds with high probability

Proof (third part):

- It remains to show: no segments smaller than $\frac{1}{2n}$ arise
- The total length of all segments of size $\frac{1}{2n}$ is at most $\frac{n}{2}$ before insertion

Proof (third part):

- It remains to show: no segments smaller than $\frac{1}{2n}$ arise
- The total length of all segments of size $\frac{1}{2n}$ is at most $\frac{n}{2}$ before insertion
- The probability that only such segments are chosen by *c* log *n* tests is at most 2^{-*c* log *n*} = *n*^{-*c*}
- For c > 1 a segment of size $\frac{1}{2n}$ is farther divided only with polynomially low probability

- Needed: Approximation value of the number n of peers in the network
- Estimation achieved by the distance of neighbors

- Needed: Approximation value of the number n of peers in the network
- Estimation achieved by the distance of neighbors
- Estimation in the Distance Halving network: exact except for a factor of 4
 - Biggest segment size: $\frac{2}{n}$
 - Smallest segment size: $\frac{1}{2n}$

- At insertion the c log n segments that have to be checked are localized by a search
- For this $\mathcal{O}(\log n)$ steps are needed as we will see shortly

- At insertion the c log n segments that have to be checked are localized by a search
- For this $\mathcal{O}(\log n)$ steps are needed as we will see shortly
- After the biggest segment was chosen:
 - The peer will be embedded in the ring structure
 - Then it establishes the further connections to the other peers with the help of the adjacent peers on the ring
- Accordingly the other neighbors in the network update, too

Overview

1 Introduction

2 Continuous Graphs

- The Distance Halving Graph
- From Continuous Graphs to Discrete Graphs

3 Insertion of Peers and the Principle of Multiple Choice

- The Principle of Multiple Choice
- Two Lemmas Concerning the Principle of Multiple Choice
- Insertion of Peers

4 Routing in the Distance Halving Network

- Simple Algorithm
- Congestion Optimized Algorithm

5 Conclusion

■ Goal: routing algorithm which only needs $O(\log n)$ steps and distributes congestion uniformly

- Goal: routing algorithm which only needs $O(\log n)$ steps and distributes congestion uniformly
- First: Simplified version which distributes congestion not uniformly

leftRouting(src, dest)

if *src* and *dest* adjacent **then** send message from *src* to *dest*

else

newSrc ← leftPointer(*src*) *newDest* ← leftPointer(*dest*) send message from *src* to *newSrc leftRouting*(*newSrc*, *newDest*) send message from *newDest* to *dest*

- This algorithm: only left edges
- The source peer calculates two intermediate stations and reduces routing to half the distance
- This continues until source and destination nodes are adjacent

- This algorithm: only left edges
- The source peer calculates two intermediate stations and reduces routing to half the distance
- This continues until source and destination nodes are adjacent
- The calculation of intermediate stations is done by the source node
- The intermediate stations must be told which path the message has to be carried on

rightRouting(src, dest)

if *src* and *dest* adjacent **then** send message from *src* to *dest*

else

newSrc ← rightPointer(*src*) *newDest* ← rightPointer(*dest*) send message from *src* to *newSrc rightRouting*(*newSrc*, *newDest*) send message from *newDest* to *dest*

- In both algorithms the distance between source and destination is halved every recursion step and every recursion step needs two steps
- Since all interval sizes differ only by a factor of $\rho = 4$, the routing algorithm needs at most $1 + \log n$ recursions to deliver a message

- In both algorithms the distance between source and destination is halved every recursion step and every recursion step needs two steps
- Since all interval sizes differ only by a factor of $\rho = 4$, the routing algorithm needs at most $1 + \log n$ recursions to deliver a message

With high probability the routing in the Distance Halving network needs at most $2 \log n + 3$ messages and steps.

■ Left and right edges can be exchanged arbitrarily in these algorithms → possibility to decide orientation (pairwise) by coin toss

- Left and right edges can be exchanged arbitrarily in these algorithms → possibility to decide orientation (pairwise) by coin toss
- First two algorithms: tending to send traffic into the outermost left or right corner
- This algorithm: good distribution of congestion
- One can show that congestion is very low

randomRouting(src, dest)

if src and dest adjacent then send message from src to dest

else

if coin shows number then
newSrc ← leftPointer(src)
newDest ← leftPointer(dest)

else

newSrc ← rightPointer(*src*) *newDest* ← rightPointer(*dest*) send message from *src* to *newSrc randomRouting*(*newSrc*, *newDest*) send message from *newDest* to *dest*

Matthias Ohst (Ferienakademie 2008)

Distance Halving

September 30, 2008 32 / 35

Overview

1 Introduction

2 Continuous Graphs

- The Distance Halving Graph
- From Continuous Graphs to Discrete Graphs

3 Insertion of Peers and the Principle of Multiple Choice

- The Principle of Multiple Choice
- Two Lemmas Concerning the Principle of Multiple Choice
- Insertion of Peers

4 Routing in the Distance Halving Network

- Simple Algorithm
- Congestion Optimized Algorithm

5 Conclusion

- Distance Halving network: degree minimized network (constant degree and logarithmic diameter)
- Elegant and simple alternative to the complex *Butterfly* graph based *Viceroy* network

Theorem (Chernoff bound)

Let $X_1, ..., X_n$ be independent Bernoulli experiments with probability $\Pr[X_i = 1] = p$ and $X = \sum_{i=1}^n X_i$. Then, for $\delta \ge 0$,

$$\Pr[X \ge (1+\delta)pn] \le e^{-\frac{1}{3}\min\{\delta,\delta^2\}pn}$$

Furthermore, if $0 \le \delta \le 1$,

$$\Pr[X \le (1-\delta)pn] \le e^{-\frac{1}{2}\delta^2 pn}.$$

