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Motivation

Goal: constant degree and logarithmic diameter
(degree minimized network)

Viceroy: complex network
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The Distance Halving Network

2003: Moni Naor, Udi Wieder

Put great emphasis on the principle of continuous graphs

Actually used in networks CAN and Chord
Formalized first by Naor and Wieder

Graph: Pair (V ,E ) with E ⊆ V × V

Discrete Graph: finite set V
Continuous Graph: infinite set V
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The Distance Halving Graph

Vertex set: V = [0, 1) ⊆ R
Edge set: E ⊆ V × V

Four types of edges (x ∈ [0, 1)):

Left edges: (x , x
2 )

Right edges: (x , 1
2 + x

2 )
Backward left edges: ( x

2 , x)
Backward right edges: ( 1

2 + x
2 , x)

Two edges (x1, y1), (x2, y2):

Both left edges or both right edges: |y1 − y2| = |x1−x2|
2

Hence the name: Distance Halving
Conversely both backward left edges or both backward right edges:
|y1 − y2| = 2|x1 − x2|
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From Continuous Graphs to Discrete Graphs

Continuous graphs: not directly useable because of the infinite
number of vertices

Partitioning the infinite vertex set V into finite many intervals
(vertices of the discrete graph), called segments

In our case: vertices (resp., segments) correspond to the peers in
the network

Simplest case: peers will be placed randomly in the interval [0, 1)

Peers: responsible for data from their positition up to the position of
their successor in the interval [0, 1)

Actually a modified positioning method is used in the Distance
Halving network
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From Continuous Graphs to Discrete Graphs (cont.)

Positions of the n peers: x1, . . . , xn in ascending order, i.e. xi < xj
for i < j

The peer xi , 1 ≤ i ≤ n, is assigned the segment s(xi) = [xi , xi+1)

There is an edge between two segments s(xi) and s(xj) iff points
u ∈ s(xi) and v ∈ s(xj) exist such that (u, v) is an edge in the
continuous graph

In addition there are edges between adjacent segments
(existence of a ring structure)

Everey path in the continuous graph can be mapped to a path in the
discrete graph

Discretization of the graph described above
 Distance Halving network
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Example for Discretization

0 1
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Degree of the Distance Halving Network

The degree of the Distance Halving network is constant if the ratio
of the biggest to the smallest interval is constant

The edges of a segment map to an interval I which is for every type
of edge at most twice as big as the segment itself

Let ρ = max1≤i ,j≤n
|s(xi )|
|s(xj )| be the ratio of the maximal segment size

to the minimal segment size

The interval I can only intersect with at most 2ρ+ 1 segments

A constant ratio of ρ = 4 can be achieved by the principle of
multiple choice

Increase of degree by a factor of nine by the discretization and
hence a constant degree for the Distance Halving network

Matthias Ohst (Ferienakademie 2008) Distance Halving September 30, 2008 12 / 35
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The Principle of Multiple Choice

Instead of choosing a random position in the [0, 1) ring at insertion,
every peer looks first at k = c log n random positions
y1, . . . , yk ∈ [0, 1)

For every position yi the size a(yi) of the segment s(x∗) which
surrounds the point yi is measured

The biggest of the segments found is chosen and the new peer is
placed in the middle of that segment

Always a relatively big segment is chosen, which implies that the
distances are relatively uniformly
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The Principle of Multiple Choice

Instead of choosing a random position in the [0, 1) ring at insertion,
every peer looks first at k = c log n random positions
y1, . . . , yk ∈ [0, 1)

For every position yi the size a(yi) of the segment s(x∗) which
surrounds the point yi is measured

The biggest of the segments found is chosen and the new peer is
placed in the middle of that segment

Always a relatively big segment is chosen, which implies that the
distances are relatively uniformly

Matthias Ohst (Ferienakademie 2008) Distance Halving September 30, 2008 14 / 35



Example for the Principle of Multiple Choice

c log n random positions

biggest found
segment
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Proof of Lemma 1 (First Part)

Lemma
If n = 2k , k ∈ N, peers are inserted in the [0, 1) ring using the principle
of multiple choice, with high probability only segments of sizes 1

2n ,
1
n

and 2
n are left.

Proof (first part):

Segment sizes: powers of two
It remains to show:

there are no segments of size less than 1
2n

there are no segments of size greater than 2
n
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Proof of Lemma 2 (first part)

Lemma
Let the biggest segment have the size g

n (g may depend on n). Then
after insertion of 2n

g peers all segments are smaller than g
2n .

Proof:

Consider a segment of size g
n

If c log n possible positions are examined during the insertion of
every peer and 2n

g peers are inserted, the expected number of hits X
in such an interval is E [X ] = g

n ·
2n
g · c log n = 2c log n
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Proof of Lemma 2 (second part)

Proof (second part):

With the Chernoff bound we get for 0 ≤ δ ≤ 1:
Pr[X ≤ (1− δ)E [X ]] ≤ n−δ

2c

δ2c ≥ 2: all these intervals are hit at least 2(1− δ)c log n times

2(1− δ) ≥ 1: every interval of minimum length g
n will be divided

with high probability
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Proof of Lemma 1 (second part)

Proof (second part):

If one applies the previous lemma for g = n
2 ,

n
4 , . . . , 4, then with high

probability no interval of size g
n exists

The number of used peers is 4 + 8 + · · ·+ n
4 + n

2 ≤ n

After the last round there are no segments bigger than 2
n

Since here only O(log n) events have to arrive, the statement holds
with high probability
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Proof of Lemma 1 (third part)

Proof (third part):

It remains to show: no segments smaller than 1
2n arise

The total length of all segments of size 1
2n is at most n

2 before
insertion

The probability that only such segments are chosen by c log n tests
is at most 2−c log n = n−c

For c > 1 a segment of size 1
2n is farther divided only with

polynomially low probability
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Insertion of Peers

Needed: Approximation value of the number n of peers in the
network

Estimation achieved by the distance of neighbors

Estimation in the Distance Halving network:
exact except for a factor of 4

Biggest segment size: 2
n

Smallest segment size: 1
2n
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Insertion of Peers

At insertion the c log n segments that have to be checked are
localized by a search

For this O(log n) steps are needed as we will see shortly

After the biggest segment was chosen:

The peer will be embedded in the ring structure
Then it establishes the further connections to the other peers with
the help of the adjacent peers on the ring

Accordingly the other neighbors in the network update, too
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Routing in the Distance Halving Network

Goal: routing algorithm which only needs O(log n) steps and
distributes congestion uniformly

First: Simplified version which distributes congestion not uniformly
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The Simplified Version

leftRouting(src, dest)
if src and dest adjacent then
send message from src to dest

else
newSrc ← leftPointer(src)
newDest ← leftPointer(dest)
send message from src to newSrc
leftRouting(newSrc, newDest)
send message from newDest to dest
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Example for the Simplified Version
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Routing in the Distance Halving Network

This algorithm: only left edges

The source peer calculates two intermediate stations and reduces
routing to half the distance

This continues until source and destination nodes are adjacent

The calculation of intermediate stations is done by the source node

The intermediate stations must be told which path the message has
to be carried on
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The Simplified Version Using Right Edges

rightRouting(src, dest)
if src and dest adjacent then
send message from src to dest

else
newSrc ← rightPointer(src)
newDest ← rightPointer(dest)
send message from src to newSrc
rightRouting(newSrc, newDest)
send message from newDest to dest

Matthias Ohst (Ferienakademie 2008) Distance Halving September 30, 2008 28 / 35



Routing in the Distance Halving Network

In both algorithms the distance between source and destination is
halved every recursion step and every recursion step needs two steps

Since all interval sizes differ only by a factor of ρ = 4, the routing
algorithm needs at most 1 + log n recursions to deliver a message

Lemma
With high probability the routing in the Distance Halving network needs
at most 2 log n + 3 messages and steps.
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Routing in the Distance Halving Network

Left and right edges can be exchanged arbitrarily in these algorithms
 possibility to decide orientation (pairwise) by coin toss

First two algorithms: tending to send traffic into the outermost left
or right corner

This algorithm: good distribution of congestion

One can show that congestion is very low
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Congestion Optimized Algorithm

randomRouting(src, dest)
if src and dest adjacent then
send message from src to dest

else
if coin shows number then

newSrc ← leftPointer(src)
newDest ← leftPointer(dest)

else
newSrc ← rightPointer(src)
newDest ← rightPointer(dest)

send message from src to newSrc
randomRouting(newSrc, newDest)
send message from newDest to dest
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Example for the Algorithm
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Conclusion

Distance Halving network: degree minimized network
(constant degree and logarithmic diameter)

Elegant and simple alternative to the complex Butterfly graph based
Viceroy network
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The Chernoff bound

Theorem (Chernoff bound)
Let X1, . . . ,Xn be independent Bernoulli experiments with
probability Pr[Xi = 1] = p and X =

∑n
i=1 Xi . Then, for δ ≥ 0,

Pr[X ≥ (1 + δ)pn] ≤ e−
1
3 min{δ,δ2}pn .

Furthermore, if 0 ≤ δ ≤ 1,

Pr[X ≤ (1− δ)pn] ≤ e−
1
2 δ

2pn .

Return
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