Distributed Hash-tables and Scalable Content-Addressable Network (CAN)

Ines Abdelghani

Ferienakademie im Sarntal 2008 FAU Erlangen-Nürnberg, TU München, Uni Stuttgart

September 2008

Introduction

- Introduction
- 2 Distributed Hash Tables (DHT)
 - Basic Concept of DHT
 - DHT Categories
 - DHT Properties
 - DHT Based Peer-to-Peer Networks

- Introduction
- 2 Distributed Hash Tables (DHT)
 - Basic Concept of DHT
 - DHT Categories
 - DHT Properties
 - DHT Based Peer-to-Peer Networks
- 3 CAN: Scalable Content Addressable Network
 - Generalities about CAN
 - CAN Design
 - CAN Design Improvements

- Introduction
- 2 Distributed Hash Tables (DHT)
 - Basic Concept of DHT
 - DHT Categories
 - DHT Properties
 - DHT Based Peer-to-Peer Networks
- 3 CAN: Scalable Content Addressable Network
 - Generalities about CAN
 - CAN Design
 - CAN Design Improvements
- 4 Conclusion

Possible Peer-to-Peer Networks Structures

- Client-Server Structure:
 - Information about data locations stored by a central server
 - Limits: scalability, update of data, single-point-failure
 - **■** Example: Napster
- Flooding:
 - Not all data can be found
 - Example: Gnutella
- Distributed Hash Tables:
 - Decentralized, distributed system

Hash Tables

- Definition: Data structure, array for storing a set of data by mapping every item x to a hash value h(x) with:
 - Universe *U*
 - Array $T[1, \ldots, m]$, Table size m
 - lacksquare Hash function $h:U o \{0,1,\ldots,m-1\}$

Properties of hash function h

- Choice of h: Need to meet quite demanding properties
 - High efficiency: h(V) easy to compute
 - Security: h one-way, hard to invert ⇒ cryptographically secure functions(MD-5, SHA-2,...)
 - Collision-free: for any x, infeasibility of finding another x' such as h(x) = h(x')Hard to satisfy: Image set is usually smaller than input set
 - Balanced mapping
 - → Designing such functions: challenging task

Example for a hash function

- h: Modulo 5 function
- $h(x) = x \mod 5$
- Let x be the file name 'music.mp3'
- **ASCII** code of x = 870.920.545.682.538.843.149
- Hash Value of x:
 - $h(music.mp3) = ASCII-code(music.mp3) \mod 5 = 4$
 - ightarrow Store item x at the position 4 in the array T $[1,\ldots,m]$

Basic Concept of Distributed Hash Tables

Array T is divided among peers

Figure: Distributed Hash Tables

Dynamic Partitioning of the Keys Set Among Nodes

- Node arrival:
 - Division of a certain keys subset between the active node responsible for this subset and the new node
 - Adding the node in the routing structure
 - Updating the routing information

Dynamic Partitioning of Keys'Set Among Nodes

- Node departure:
 - Allocation of associated keys subset to neighboring nodes
 - Data migration to new responsible nodes
- Node failure:
 - Use of redundant routing paths and nodes
 - New allocation of corresponding keys subset to active nodes

DHT Categories

- Deterministic DHTs:
 - First deterministic DHTs: CAN, Chord, Pastry
 - Overlay connection: function of the current set of node IDs
 - Only two sources of uncertainty:
 - Size of the network not known accurately to all participants
 - Mapping of subset of keys to nodes not exactly even
- Randomized DHTs
 - Viceroy: first randomized protocol for DHT routing

DHT Properties

- High scalability
- High robustness against frequent peers departures and arrivals
- Self organization: No need for a central server
 - → No single-point failure problem
 - → Higher fault tolerance

Why DHT in Peer-to-Peer Networks?

■ Balanced distribution of data among nodes:

Avoid having nodes overloaded with data

Minimum disruption by nodes joining, leaving and failing:

Only a small part of the network concerned by a change in the set of participants

→ Consistency

DHT Based Peer-to-Peer Networks

- CAN
- Chord
- Tapestry
- Pastry
- Kademlia
- P-Grid

CAN: Historical Context

- Most of in that period existing Peer-to-Peer designs not scalable: Napster (central structure), Gnutella (unsecured, flooding for data lookup)
 - → 2001: Content-addressable Network CAN

Literature: Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, Scott Schenker: *A Scalable Content-Addressable Network*. SIGCOMM 2001:161-172

CAN Design

Figure: Ideal structure of a two-dimensional CAN

CAN Design

Figure: Typical Structure of a two-dimensional CAN

* Torus Edges not visualized

CAN Construction

- Finding any existing node in CAN
- Finding the corresponding zone to be split
- Notifying the neighbors of the split zone with the new node coordinates and IP adress:
 - → Allocation of data to all other peers remain unchanged: consistency

Figure: CAN Construction

Question: How uniform is the distribution of the data after peers insertion?

Question: How uniform is the distribution of the data after peers insertion?

- Data load proportional to zone area
- Low probability of perfect uniform partitioning

- \blacksquare Let p be a peer in CAN
- \blacksquare R(p) rectangle associated to peer p
- \blacksquare A(p) area of the rectangle R(p)
- $P_{R,n}$ Probability that the rectangle R(p) is not split after having n peers joining the network
- Lemma 1:

$$P_{R,n} \leq \mathrm{e}^{-nA(p)}$$

Proof of Lemma 1

- Let q = A(p)
- \blacksquare P_R Probability that R(p) is not split after the insertion of a new peer

Proof of Lemma 1

- Let q = A(p)
- \blacksquare P_R Probability that R(p) is not split after the insertion of a new peer

$$P_{R} = 1 - q$$

■ $P_{R,n}$ Probability that the rectangle R(p) is not split after having n peers joining the network:

$$\Rightarrow P_{R,n} = (P_R)^n = (1-q)^n$$

■ For $\forall m \succ 0$: $(1 - \frac{1}{m})^m \le \frac{1}{e}$ $\Rightarrow P_{R,n} = (1 - q)^n = ((1 - q)^{\frac{1}{q}})^{nq} \le \frac{1}{e}^{nq} = e^{-nq} = e^{-nA(p)}$

- \blacksquare Let p be a peer in CAN
- \blacksquare R(p) rectangle associated to peer p
- \blacksquare A(p) area of the rectangle R(p)
- c constant

- \blacksquare Let p be a peer in CAN
- \blacksquare R(p) rectangle associated to peer p
- \blacksquare A(p) area of the rectangle R(p)
- c constant
- Theorem 1: In CAN, after the insertion of n peers, for the probability P_A of having a rectangle R(p) with area $A(p) \ge 2c \cdot \frac{\ln(n)}{n}$ we have:

$$P_A \leq n^{-c}$$

Interpretation of Theorem 1

- Theorem 1: In CAN, after the insertion of n peers, the probability P_A of having a rectangle R(p) with area $A(p) \geq 2c \cdot \frac{ln(n)}{n}$ is very low, i.e. $P_A < n^{-c}$
- Interpretation: The probability that a zone associated to a given peer is $2c \ln n$ times larger than the average area $\frac{1}{n}$ is smaller than n^{-c} .
- Same interpretation for the amount of data managed by one peer

CAN Basic Operations

- Insertion of (key, value) pairs
- Lookup for (key, value) pairs
- Deletion of (key, value) pairs

Insertion of (key, value) pairs

- Key K_1 mapped onto a point O_1 in the coordinate space by a uniform hash function
- Point R_1 in a zone Z_1
- Peer P_1 owns zone Z_1
- Peer P_1 stores the (K_1, V_1) data

Lookup/deletion of (key, value) pairs

- \blacksquare Requesting peer: P_R
- Requested data (K_R, V_R)
- lacktriangle Coordinates of point O_R calculated by N_R
- $lacksquare O_R$ in Zone Z_R
- \blacksquare Routing from requesting peer to peer managing the zone Z_R

CAN Routing

Figure: Request Messages Routing in CAN

CAN Routing

- Coordinate Routing Table in each CAN node:
 - IP address and virtual coordinates of immediate neighbors
- Greedy routing in CAN:
 - Straight line path: $Z_R \rightarrow Z_D$ with:

 P_R : Requesting peer, Z_R : Requesting zone

 P_D : Destination peer, Z_D : Destination zone

CAN Maintenance

■ Node departure: Leaving procedure

CAN Maintenance

- Node departure: Leaving procedure
- Node failure:

CAN Maintenance

- Node departure: Leaving procedure
- Node failure: Immediate Takeover Algorithm

CAN Maintenance

- Node departure: Leaving procedure
- Node failure: Immediate Takeover Algorithm
 - → Problem: Space fragmentation

CAN Maintenance

- Node departure: Leaving procedure
- Node failure: Immediate Takeover Algorithm
 - → Problem: Space fragmentation
 - → Solution: Background zone-reassignment algorithm

Node Failure

Figure: CAN before node failures Figure: CAN after node failures

Example of CAN Binary Tree

Figure: CAN Tree Presentation

Background zone-reassignment algorithm: simple case

Figure: Zone-reassignment algorithm: simple case

Background zone-reassignment algorithm: complex case

Figure: Zone-reassignment algorithm: complex case

■ Multi-dimensioned coordinate space

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces
- Overloading coordinate zones

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces
- Overloading coordinate zones
- Multiple hash functions

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces
- Overloading coordinate zones
- Multiple hash functions
- Topologically-sensitive CAN overlay network

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces
- Overloading coordinate zones
- Multiple hash functions
- Topologically-sensitive CAN overlay network
- Better CAN routing metrics

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces
- Overloading coordinate zones
- Multiple hash functions
- Topologically-sensitive CAN overlay network
- Better CAN routing metrics
- More uniform partitioning

- Multi-dimensioned coordinate space
- Realities: Multiple coordinate spaces
- Overloading coordinate zones
- Multiple hash functions
- Topologically-sensitive CAN overlay network
- Better CAN routing metrics
- More uniform partitioning
- Caching and replication techniques

Conclusion

- Distributed Hash Tables:
 - DHT Basic concepts
 - DHT categories
 - DHT properties
- CAN:
 - Basic Design
 - Design Improvements

Proof of Theorem 1

- Let R_i be a rectangle with the area $A(R_i) = 2^{-i}$
- c a constant
- $P_{R_i,c2^i lnn}$ the probability that the rectangle R_i remains undivided after the insertion of $c2^i lnn$ peers
- Using Lemma 1: $P_{R_i,c2^i\ln n} \leq \mathrm{e}^{-A(R_i)c2^i\ln n} = \mathrm{e}^{-c\ln n} = n^{-c}$ $\Rightarrow P_{R_i,c2^i\ln n} \leq n^{-c}$

Proof of Theorem 1 (Continue)

■ We obtained for $P_{R_i,c2^i lnn}$ the probability that the rectangle R_i remains undivided after the insertion of $c2^i lnn$ peers:

$$P_{R_i,c2^i \ln n} \leq n^{-c}$$

- Let's consider the insertion of peers stepwise $i = 1, 2, ..., \log \frac{n}{2c \ln n}$
- In step i, $c2^i lnn$ peers are inserted, that divide the rectangle R_i with high probability
- After the $\log \frac{n}{2c \ln n}$ -th step, is also the rectangle R_i with area equal to $2c \frac{\ln n}{n}$ high probably divided

Proof of Theorem 1 (Continue)

- After the $\log \frac{n}{2c \ln n}$ -th step, the number of peers N inserted is: $N = \sum_{i=1}^{\log \frac{n}{2c \ln n}} c2^{i} \ln n = c(\ln n). \sum_{i=1}^{\log \frac{n}{2c \ln n}} 2i$
- $N \le c(\ln n)2\frac{n}{2c\ln n} = n$ ⇒ The number of peers in CAN in this case is at most equal to n⇒ The rectangle with area $2c\frac{\ln n}{n}$ remains undivided after the insertion of n peers with a probability equal to n^{-c}/nn

Proof of Theorem 1 (Continue)

- There is at mnost *n* such rectangles
- The probability that one of this rectangle remains undivided is at most $n.n^{-c}.\log n \le n^{-c+2}$

