Distriubted Hash Tables and Scalable Content
Adressable Network (CAN)

Ines Abdelghani

22.09.2008
Contents
1 Introduction
2 Distributed Hash Tables: DHT

2.1 Generalities about DHTs
2.2 Basic Concepts of DHTs
2.3 Categoriesof DHTs
2.4 Metrics of DHT measurement
2.5 Propertiesof DHTs
2.6 DHT based peer-to-peer networks

Scalable Content Addressable Network: CAN

3.1 Historical Context for CAN

3.2 CAN Design o e
3.2.1 CAN Basic Design
3.2.2 CAN Design Improvements

Conclusion

L O O i W NN

0 YOO

1 Introduction

The current and next generations of Peer-to-Peer networks are required to be able to of-
fer its participants efficient and secure services including data storage and exchange. By
investigating the topology underlying these networks ,the main issues that have to be ad-
dressed are the location where the data can be stored, the processes to be used to retrieve
a given stored data, the methods adopted to minimize the costs generated by these lookup
processes and the solutions set to increase the robustness of these systems against failures
and changes.

To satisfy these increasing requirements for flexibility, efficiency and robustness, the struc-
ture of the Peer-to-Peer networks has been improved from a client-server structure where
a single server stores information about the location of the data to a decentralized and
distributed structure: Distributed Hash Tables.

In the context of our survey, we will investigate in section 2 the main characteristics of
this important peer-to-peer structure, which was and remains subject to several research
projects. In section 3, we present the first peer-to-peer network based on the concept of
distributed hash tables, which is the Scalable Content Addressable Network referred
to as CAN.

2 Distributed Hash Tables: DHT

In this section, we will further discuss the interesting structure of the distributed hash
tables. After introducing in section 2.1 a general idea about distributed hash tables, we
will present the basic concepts underlining this structure. A categorization of distributed
hash tables is introduced in section 2.3. This part of the article will be concluded by
pointing out the main metrics for DHTs measurement, the properties characterizing the
distributed hash tables and giving some examples for famous peer-to-peer networks using
this structure.

2.1 Generalities about DHT's

Distributed hash tables has presented a popular subject for research and investigation.until
today It can be considered as both an old and new topic, that attracted both academic as
well as industrial interests. As mentioned in [Man03], the SDDA (Scalable Distributed Data
Structures) community studied extensively this structure. One of the preliminary works
in this area was elaborated by Litwin, Niemat and Shneider, who presented hash tables
with central components designed for small-sized clusters. The area of research has been
recently extended to cover high performance hash tables over large clusters. Distributed
hash tables were also introduced as a possible structure to implement for peer-to-peer
networks with millions of dynamic participants.

2.2 Basic Concepts of DHT's

To get a clear understanding of distributed hash tables, highlighting the concept of hash
table is necessary. Basically, a hash table is an array to store a set of items. Every item
x is mapped to a hash value h (V') and then stored in slot h (V') in the array. The hash
function is a function:

h:U—{0,1,...,m—1}

that maps each possible item in U to a position in the hash table. The parameter m is the
size of the hash table.

This technique cannot be applied directly to store data in peers. As explained in [May93],
this is infeasible because the number of active peers changes constantly and leads to the
necessity of continuously adjusting the table’s indexing. Furthermore, this would require
a new allocation of data to peers with each peer departure, arrival or failure, which is
very inefficient. These difficulties and performance constraints related to the direct use
of hash tables in the peer-to-peer newtworks represented an incentive to develop a the
concept of Distributed Hash Table (DHT), which became progressively a standard method
in Peer-to-Peer networks. This structure is based on the following main concepts:

1. Mapping data values to keys:
Data value V' is mapped to a key K using a hash function as follows:

h(V) =K.

The hash function needs to meet a quite demanding set of properties. First, the hash
function should be easy to compute in order to ensure high efficiency of the mapping
process. In addition to this requirement, the hash function should be one-way, i.e. it
is hard to invert, so that for any K, it is computationally infeasible to find V' such
as V = h(K). Another property of h is that it should be collision-free i.e. for any V'
it is impossible to find another V' such as h (V') = h (V).

These targeted properties of the hash function are hard to satisfy simultaneously
since they may be contradictory: for example to obtain a function that is hard to
invert, the degree of difficulty to compute the value of such a function will necessarily
increase. This fact make designing such functions a very challenging task.

2. Dynamic partitioning of the keys set among nodes:

The interval of keys is divided in different parts and each part is associated to an
active peer in the network. This partitioning is dynamic and can be efficiently ad-
justed by any change in the set of participants:

In case a node newly joins the network, any active node is contacted and half of its
keys subset is given to the new node. The routing structure has to be updated: the
to the contacted node neighboring nodes are informed about the new node and their
routing information is adequately updated.

If a node leaves the network, the keys subset is allocated to its neighbors and the
stored data is moved to the new responsible nodes. The keys set partitioning can be

adapted by nodes failure. In fact, the corresponding keys subset is allocated to other
active nodes but the stored data cannot be recovered. Until the updating of the keys
partitioning is done, the functioning of the network can continue by using redundant
routing paths and nodes.

3. Data Storage:
Once the key K is calculated, the data can be stored at the location associated to the
obtained key. There are two ways of storing the data. This can be done directly,
where data values are stored directly by the node responsible for their associated
keys. Another alternative is to store pointers to where the data values are actually
stored.

4. Data lookup:
Any node in the network can retrieve any stored data. The requesting nodes contacts
a random active node. If the data is stored at a key in the subset associated to the
contacted node, there is no need for routing the data request through the network
structure. Otherwise the request is spread until reaching the node responsible for
storing the requested data. Several routing algorithms were developed in this context.
Based on the desired features of the network (minimum latency time, high security,
..) , a certain routing algorithm can be adopted. An example for this routing
algorithm will be discussed in section 3.2 as we introduce the CAN design.

2.3 Categories of DHT's

Based on how the routing is performed through the network, DHTs can be classified in
two categories:

1. Deterministic DHT:

This type of DHTSs is characterized by only two sources of uncertainty as stated in
[Man03], which are the size of the network and the mapping of subset of keys to
node. In fact, the size of the network is not accurately known to all participants and
the mapping of the keys to nodes is not exactly even, which adds uncertainty to the
structure. In this type of networks, the overlay connection is a deterministic function
of current set of node IDs. The first deterministic DHT proposals are Chord, Pastry,
Tapestry and CAN, which we will further discuss in section 3.

2. Randomized DHT:

The main feature of DHTs in this category is the large set of possible topologies.
Unlike the deterministic DHT, where the network topology is determined by the
set of nodes ids alone, the topology of the randomized DHT is chosen from this set
of possible structures at run-time depending upon the random choices made by all
participants. Viceroy was the first randomized protocol for DHT routing [Man03].
This increased randomness has positive effects on the robustness of the system and
increases the flexibility of the routing process. However, it increases the complexity
of the network.

2.4 Metrics of DHT measurement

As discussed in [NWO06], there are several parameters, by which a DHT is measured. One
of these parameters is the cost of join and leave. Any change in the participants set
should cause a minimum disruption to the service and be accommodated easily by the
system. When nodes join or leave, only a small number of participants should change
their state. Another factor, which can be taken into account by measuring a DHT, is the
congestion. Indeed, the performance of the service should have no bottleneck. The cost
of lookups routing through the system should be evenly distributed among participating
servers. Among the parameters stated in [NWO06], the lookup path length and the dynamic
caching addressing the problem of bottleneck caused by highly popular data items.were
mentioned. In fact, the forwarding path for searching a requested data should involve
as few machines as possible. Moreover, the fault tolerance against servers or connections
failures represents another metric to measure a DHT.

2.5 Properties of DHT's

Distributed Hash Tables were subject to a considerable amount of attention due to their
attractive properties, which can be summarized as follows [BKKRMO03]:

e Self Organization:
In a DHT based network, the organization and maintenance of the system is dis-
tributed among the nodes. There is no need to have a central server to manage the
overall data storage and retrieval. As a result, the problem of a single-point failure
is removed and the fault tolerance of the network is increased.

e High scalability:
Due to their decentralized structure, DHTs are highly scalable. They can be easily
extended to include a large number of peers.

e High robustness:
Peers departures, arrivals and failures cause a minimum disruption of the system and
affect only a part of the whole network. This fact results in a high robustness of DHT
based networks against changes in the set of participants. This property is called in
some refrecences consistency.

2.6 DHT based peer-to-peer networks

There are many peer-to-peer networks based on the concept of distributed hash tables:
CAN (Scalable Content Addressable Network), Chord, Tapstry, Pastry, Kademelia, P-
Grid, ...

3 Scalable Content Addressable Network: CAN

In this section, we first present the historical context of the CAN network in order to
better understand the link of CAN to the general evolution of peer-to-peer networks. In a
second part of this section, we discuss the basic design of CAN and introduce its several
improvements alternatives.

3.1 Historical Context for CAN

The idea of peer-to-peer networks was created in 1999 by the disclosure of a client software
by Shawn Napster [May93]. Indeed, Napster was the first network referred to as peer-to-
peer network. In 2000, Justin Frankel and Tom Pepper presented the Gnutella network.
Both of these networks were not scalable and the research aimed to develop network designs
that can fit to very large networks such as the Internet. In this context, Sylvia Ratnasamy;,
Paul Francis, Mark Handley, Richard Karp and Scott Shenker introduced in 2000 the
Scalable Content Addressable Network in [REH*01]. CAN was not only applicable to peer-
to-peers systems but itcan also be used for large scale storage management systems, the
construction of wide-area name resolution services and some others applications [RFH01].

3.2 CAN Design

We investigated the features underlying the design of CAN. Here we present first the basic
CAN design and then discuss the different possibilities to improve it.

3.2.1 CAN Basic Design

CAN is built on the structure of distributed hash table. Its design is based on a virtual d-
dimensional Cartesian coordinate space. The dimensionality of Cartesian coordinate space
is a parameter to be used for design improvement as it is shown in section can:b-design.
For the 2-dimensional CAN, a square area () = [0,1) x [0,1) is partitioned in rectangles
and squares. Each of them is allocated to a given peer, who is responsible for storing and
managing all data mapped to his rectangle.

To enable the CAN to grow incrementally [RFH'01], a new node joining the network must
be allocated its own zone in the coordinate space. To start the process to join the network,
the new node must find and contact an active node in the CAN, which splits its allocated
zone with the new node, retaining half and handing the other half to the joining node. The
keys and values data of the space part newly allocated must be transferred to the joining
node. In a final phase, the neighbors of the split zone must be notified with this update in
the coordinate space partitioning, so that the routing information of each node are correct
and conform to the actual mapping of data to peers.

An interesting issue in CAN design is the distribution of data distribution among network
participants. As stated in [May93], a uniform load distribution is low probable: Let’s
consider a peer p in CAN with R (p) its associated rectangle. Let A (p) denotes the area

of the rectangle R (p). The following lemma gives an upper bound to the probability that
the rectangle R (p) is not split after having n peers joining the network, Pg,:
Lemma 1:

Prp, < e nAP)

Proof:
Let ¢ = A (p).We can express the probability that R (p) is not split after the insertion of a
new peer Pgr as follows:

P R — 1-— q

Based on this, the probability that the rectangle R (p) is not split after having n peers
joining the network Ppg, can be calculated as follows:

Prn=(Pr)"=(1—¢q)"

We have for Vm = 0: (1 — %)m < %
Using this relationship, we obtain:

1™
Pro=(1-q"=(1-q))"" <> =e =gl
e

Lemma 1 is the basis for the theorem describing the greatest area a rectangle can have
after the insertion of n peers:
Theorem: In CAN, after the insertion of n peers, for the probability P, of having a
rectangle R (p) with area A (p) > 2¢- ™ we have:

n

PA S n= ¢
A detailed proof of this theorem can be found in [May93].

The basic operations performed by CAN are the insertion, lookup and deletion of (key,
value) pairs. To understand the mechanism behind the CAN operations, we consider
exemplary a key data Kj and a value data Vj. (K7,V}) can be the inserted, requested or
deleted data pair. For all operations, the key K; is mapped onto a point Ri(x,y) in the
coordinate space using two hash uniform hash functions h, and h, as follows:

xr = h, (K;y) and y = hy, (K;)

The point R, is located into a zone Z; in the coordinate space. This zone is allocated
to a certain peer P;, who is responsible for the storage and managing of all data associated
to zone Z; among them the (K7,V)) data pair. Figure ?? illustrates how the mapping of
data to peers is done in CAN. If the by CAN performed operation is a lookup for (K7, V;)
data, we can distinguish between the requesting peer Pg and the peer P;. Two possible
scenarios may take place:

1. If Pg is the same as Pj, there is no need to forward the data request through the
CAN structure.

2. If Pg is different from Pj, the data request must be routed through the network until
reaching the node N; responsible for Z;.

The routing performed by CAN is the so-called Greedy routing: it is simply following

the straight line path through the Cartesian space from source to destination coordinates.
Every data request message includes the destination point as the wished destination ad-
dress. In fact, each CAN node has a coordinate routing table listing the IP adresses and
virtual coordinates of its immediate neighbors and it forwards the request message to
its neighbor, which is the nearest one to the destination node. The CAN design defines
the procedure to be adapted by node departure:the zone associated to the leaving peer is
taken over by one of his neighbors. Two scenarios can be considered at this stage: if one
of the neighbors zone can be merged with the departing node zone, then this is merging
operation is performed and a valid single zone is created. Otherwise, the zone is handed
to the neighbor with the smallest current zone, which temporarily manage both zones si-
multaneously.
The maintenance of CAN is ensured by the periodic update messages, which each node
sends periodically to its neighbors stating its zone coordinates and a list of its neighbors
and their zone coordinates. As indicated in [May93], the prolonged absence of such update
messages can be considered as a signal to the failure of a given node. Once one node no-
tices that its neighbor is no more active, it initiates immediately the takeover mechanism.
Several metrics can be taken into account by choosing which node will become responsible
for the departing node zone: actual zone volume,associated load, quality of connectivity,
.... It can happen that, not only one neighboring node but more than half of the neighbor-
ing nodes fail. In this case, the active node cannot take over all the zones because of the
generated CAN inconsistency problem, it must perform an expending ring search for any
nodes residing beyond the failure region and rebuild sufficient neighbor state to initiate a
takeover safely.

3.2.2 CAN Design Improvements

The basic design described previously in section 3.2.1 can be improved at several levels. In
fact, with a number of design techniques cited in [RFHT01], the latency of CAN routing can
be reduced, the CAN robustness in terms of routing and data availability can be improved
and a load balance can be reached. These design techniques are summarized below:

1. Increase coordinate space dimensionality:
By increasing the dimensionality of the Cartesian coordinate space, the average rout-
ing path length is reduced and so is the overall routing latency. Besides, the number
of neighbors increases, which implies that the routing fault tolerance is improved.

2. Maintain multiple, independent coordinate spaces (Realities):
This technique consists on considering for a CAN r coordinate spaces with each

4

node in the system being assigned r coordinate zones, one in every reality. With
the replication of the contents of hash table, the data availability is significantly
improved. It is not the only advantage of this measure, better routing fault tolerance
and reduced overall CAN latency are also obtained by using this technique.

. Overloading coordinate zones:

Overloading coordinate zones implies having multiple nodes sharing the same zone
called peers. An important design parameter of this technique is the maximum
number of allowable peers per zone, named MAXPEERS. Detailed description of
this measure is included in the paper [RFH'01]. The main gains from this design
extension is the reduced path latency and the improved fault tolerance. The cost for
these gains is the increased system complexity.

. Use of multiple hash functions:

To improve data availability, a single key can be mapped onto M different points in
the coordinate space by using several different hash functions. The drawbacks of this
technique are the increased size of the (key, value) database and the increased query
traffic.

. Choice of CAN routing metrics:

Having routing metrics reflecting the underlying IP topology of the CAN such as the
network-level round-trip-time RTT favors lower latency paths. As a direct conse-
quence, the overall CAN latency is reduced.

. Topologically-sensitive construction of the CAN overlay network By constructing

CAN topologies congruent with the underlying IP topology, the CAN path latency
can be remarkably reduced.

. Performing a more uniform partioning:

By the insertion of a new node, the active node, which zone will be split is not
necessarily the first contacted node but it can be one of its neighbors, which zone
has the smallest volume. This measure leads to a more balanced load partitioning
among nodes.

. Introducing caching and replication techniques:

The CAN design can be improved by applying some of the caching and replication
techniques commonly used for the management of hot spot in Web. Indeed, main-
taining a cache of the data keys recently accessed at the CAN node level makes very
popular data widely available. Moreover, the replication of frequently requested data
to neighboring nodes enables a better load spreading.

Conclusion

In this work, we investigated the functioning and special features of the distributed hash
tables (DHT). In a second part we presented the scalable Content Addressable Network

9

as an example for a peer-to-peer network based on the DHT concept. We discussed its
basic design and summarized the possible techniques to improve the CAN performance.
However, even with all these improvement measures CAN couldn’t compete with other
Peer-to-Peer networks such as Chord, Pastry and Tapestry, which are more efficient in
terms of network grade and routing latency

References

[BKKRMO03] H. Balakrishnan, M.F. Kaashoek, D. Karger, and and I. Stoica R. Morris.

[Man03]

[May93]

[INWO6]

[RFH*01]

Looking up data in p2p systems. Communications of the ACM, 2003.

Gurmeet Sigh Manku. Routing networks for distributed hash tables. Stand-
ford University, 2003.

Mayer. Peer-to-Peer Netwroks. Addison-Wesley, Reading, Massachusetts,
1993.

M. Naor and U. Wieder. Novel architectures for p2p applications: the
continuous-discrete approach. Proc. SPAA, 2006.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-adressable network. SIGCOMM, 2001.

10

