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The Butterfly

The r-dimensional butterfly consists of
m (r+ 1)2" nodes and
m r2t1 edges

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 4/65



The Butterfly

The r-dimensional butterfly consists of
m (r+ 1)2" nodes and
m r2t1 edges
such that
m node is (w,i): i is a level, w - r-bit number of row
m (w,i) and (W, /") are linked < (w=w’ OR w and w’ differ in ith bit)
AND i’=i+1
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Example: three-dimensional butterfly

Level 0 Level1 Level2 Level3




Routing Problem

m routing N packets

m start — node (u,0) on level 0

m destination — node (w(u),log N) on level log N
m 7 :[1,N] — [1, N] is a permutation

m on-line algorithms: no global controller
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Greedy algorithm

m the unique path of length log N from (u, 0) to (w(u),log N) —
greedy path
m greedy routing algorithm: each packet follows its greedy path
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Greedy algorithm

m the unique path of length log N from (u, 0) to (w(u),log N) —
greedy path
m greedy routing algorithm: each packet follows its greedy path

m main problem: routing many packets in parallel = many greedy
paths might pass through a single node or edge: Congestion!
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Overview

Introduction

m Greedy algorithm efficiency and worst cases
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Fact: greedy algorithm efficiency

The algorithm that chooses greedy paths, can solve any routing
problem in O(v/N)
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Overview: worst-case behavior

m if 7 is the bit-reversal permutation:
m(Us -+ UogN) = Uiog N+ U4

then the greedy algorithm will take O(+/N) steps (and congestion
C>VN/2)
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Overview: worst-case behavior

m if 7 is the bit-reversal permutation:
m(Us -+ UogN) = Uiog N+ U4

then the greedy algorithm will take O(+/N) steps (and congestion
C>VN/2)

m the same result holds for transpose permutation

m(uy --'U@U@_H -"UlogN) = U@.ﬂ - Uiog NUA "'U@
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Example: bit-reversal permutation

Level 0 Level1 Level2 Level3

row 000 3} ¢ ) ‘v :
row 001 28 row 100
\ .' ‘. ;

it

<uquzuz,0> >
<usUpu4,3>
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Average-case behavior: problem statement

m we need to route packets in the butterfly
m all packets start at level 0
m each packet has a destination at level log N,considered as random
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Average-case behavior: problem statement

m we need to route packets in the butterfly
m all packets start at level 0
m each packet has a destination at level log N,considered as random

m p is the number of packets at each input

m if p = 1: standard N-packet routing problem
m if p = log N: network is more heavily loaded
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Plan of analysis

m obtain bounds on congestion
m obtain bounds on running time
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Overview

The Average-Case Behavior
m Bounds on congestion
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Upper bound on P,(v)

m P,(v) = Probability(r or more packet paths pass through node v
onleveli),r>0,0<i<logN

m we are randomizing routing problems!

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 15/65



Upper bound on P,(v)

m P,(v) = Probability(r or more packet paths pass through node v
onleveli),r>0,0<i<logN
m we are randomizing routing problems!

m at most p2' packets pass through v

m there are 2°9N~7 choices of destinations that will cause these

packets to pass through v ‘
= each of p2' pass through v with probability 2/
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Example: choices of inputs and outputs
Level 0 Level 1 Level 2 Level 3

=2
2'inputs = 4
N2 outputs = 2




Upper bound on P,(v)
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Notes about upper bound on P.(v)

Pr(v) < ()

m The bound does not depend on v oron i
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Notes about upper bound on P.(v)

Pr(v) < ()

m The bound does not depend on v or on i = for any random
routing problem r or more packets pass through any node with
probability < Nlog N (22)"
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Notes about upper bound on P.(v)

Pr(v) < ()

m The bound does not depend on v or on i = for any random
routing problem r or more packets pass through any node with
probability < Nlog N (22)"

m we can make this probability be very low by choosing large r
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Two particular cases of upper bound on P,(v): case 1

log N

m if p > =5—, we choose r = 2ep = O(p):

elogN
NIogN(pre)rgNlogN<;> _ N'log N < 1/N?/2
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Two particular cases of upper bound on P,(v): case 2

m if p <9V we choose r = lze('ffg[)’) and omit technical details:
og( =5~

NlogN(pTe)' < 1/N?
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Result: outline of the analysis

m bound for P,(v)
m it does not depend on v and i = bound for all nodes
m it decreases when r increases

m choose r (for different p) large enough to make the bound small:
1/N3/2
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Result: bound on congestion

For all but at most a 1/N%/2 fraction of the possible routing problems at
most C packets pass through each node during a greedy routing where
2ep,ifp> —— o g N

C= IogN

2elog N/ log (IO%N> Jfp <
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Result: simple form of a bound

With high probability the congestion in a random problem is at most

C = O(p) + o(log N)
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Generalization of the result

Corollary. For any « > 0, the congestion of all but 1/N¢ of the
possible routing problems with p packets per input in a
log N-dimensional butterfly is at most O(ap) + o(«log N)
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Two special cases

m p = 1: the maximum number of packets that pass through any
node is O(log N/ loglog N) with high probability

m compare this bound with the worst case congestion: O(v/N)
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Two special cases

m p = 1: the maximum number of packets that pass through any
node is O(log N/ loglog N) with high probability

m compare this bound with the worst case congestion: O(v/N)

m p = O(log N): at most O(log N) packets will pass through any
node with high probability
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Conclusion: first bound on running time

The time needed to deliver every packet to its destination is at most
(C — 1)log N in most routing problems, where

C = O(p) + o(log N)

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 26 /65



Conclusion: first bound on running time

The time needed to deliver every packet to its destination is at most
(C — 1)log N in most routing problems, where

C = O(p) + o(log N)

Now we will show that the running time is log N + O(p) + o(log N) for
almost all routing problems.
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Overview

The Average-Case Behavior

m Bounds on running time
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Random-rank protocol: motivation

If two or more packets are waiting to exit a node, we need to specify a
protocol for deciding which packet will move forward out of the node
first.
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Random-rank protocol: details

m random priority key r(P) € [1, K] for each packet P
m define total order on the packets: t(P) is the rank of packet P
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Random-rank protocol: details

m random priority key r(P) € [1, K] for each packet P
m define total order on the packets: t(P) is the rank of packet P
m define w(P) = (r(P), t(P))
m order w(P):
if P # P’ we say that w(P) < w(P’) < (r(P) < r(P’)) OR
(r(P) =r(P") AND t(P) < t(P))
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Random-rank protocol: details

m random priority key r(P) € [1, K] for each packet P
m define total order on the packets: t(P) is the rank of packet P
m define w(P) = (r(P), t(P))
m order w(P):
if P # P’ we say that w(P) < w(P’) < (r(P) < r(P’)) OR
(r(P) =r(P") AND t(P) < t(P))
m the packet with smallest w exits the node first
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Random-rank protocol: naive question

Why do we need both r and t?
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Random-rank protocol: naive question

Why do we need both r and t?

m ris random = sometimes not unique
m tis not random
m w(P) = (r(P), t(P)) is random and unique
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Example: random-rank protocol

<00, H, 5=

Figure: initial configuration: (destination, name, rando
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Example: random-rank protocol

Figure: after step 1
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Example: random-rank protocol
I‘ <01, C. 5>

Figure: after step 2
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Example: random-rank protocol

Figure: after step 3
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Example: random-rank protocol

=11, F, 9=

Figure: after step 4
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Theorem about running time

If we use random-rank protocol, the congestion equals C, then the
running time is T with probability at least 1 — 1/N’, where

o), it ¢ > 09N '°9 N

ogN

T:
log N + O(IogN/Iog( C )),ing

Iog N
2
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Proof: preliminaries

We consider routing problem with congestion number C, random keys
r(P) and running time T. We will show that T satisfies the bound from
the theorem.
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Delay path

m £ is the last packet to reach its destination vy, it was last delayed
at the node vy, [y is the number of steps in the path vi — v
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Example: delay path

Figure: Po = F, vop = (11,2)
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Delay path

m F is the last packet to reach its destination vy, it was last delayed
at the node vy, [y is the number of steps in the path vi — v

m P is the packet responsible for delaying Py. Py itself was delayed
at the node v», /; is the number of steps in the path vo — v

Sept. 2008 40/65
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Example: delay path

Figure: Py = B, vy = (10, 1)
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Delay path

m P, is the last packet to reach its destination vy, it was last delayed
at the node vy, [y is the number of steps in the path vi — vy

m P is the packet responsible for delaying Py. Py itself was delayed
at the node v, /i is the number of steps in the path v» — v4

m we proceed in a similar fashion until the sequence of delays ends
at vs
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Example: delay path

<00, H, 5=

Figure: P, = A, v» = (00, 0)
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Delay path

m P is the last packet to reach its destination vy, it was last delayed
at the node vy, |y is the number of steps in the path vi — vy

m P is the packet responsible for delaying Py. Py itself was delayed
at the node vy, /; is the number of steps in the path vo — v4

m we proceed in a similar fashion until the sequence of delays ends
at vs. Ps moves forward from vs during step 1.

mP=v;— ... — vy — yisthe delay path
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Delay path and running time

T—b—h—...— 5_1—(3—1):1and
hb+...+ls_1=1ogN=s=T—logN
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Delay sequence

A delay sequence consists of

m adelay path P
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Delay sequence

A delay sequence consists of

m adelay path P
mintegersly > 1,1 >0,...,/51>0,h+...+ls_1 =logN
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Delay sequence

A delay sequence consists of
m adelay path P
mintegersly > 1,1 >0,...,/51>0,h+...+ls_1 =logN
®m nodes vy, Vy,...,Vs: Vjisthe node of Pon level logN — lp — ... — [s_1
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Delay sequence

A delay sequence consists of

m adelay path P

mintegersly > 1,1 >0,...,/51>0,h+...+ls_1 =logN

®m nodes vy, Vy,...,Vs: Vjisthe node of Pon level logN — lp — ... — [s_1
m different packets Py, P4, ..., Ps: the greedy path for P; contains v;
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Delay sequence

A delay sequence consists of

m adelay path P
mintegersly > 1,1 >0,...,/51>0,h+...+ls_1 =logN

®m nodes vy, Vy,...,Vs: Vjisthe node of Pon level logN — lp — ... — [s_1
m different packets Py, P4, ..., Ps: the greedy path for P; contains v;
m keys ko, ki, ..., ks for the packets: ks < ks_1 < ... < ko,

ki € [0, K].

A delay sequence is active, if r(P;) = kjfor0 </ < s.
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Example: active delay sequence

P =<00,0> 2<10,1> =><11,2>
Io= 1, I1 =1
Vo= <11,2>, v4=<10,1>, v»=<00,0>
P0=F, P1=B, P2=A
k0=9, k1=3, k2=2
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Main property of an active delay sequence

Pr(T <s+logN) <

< Pr(there is an active delay sequence with s + 1 packets)
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Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 49 /65



Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P
[ (3“‘3’9_'1\”2) choices forlp > 1,/4 >0...,/s>0,> /i =logN
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Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P
[ (3“‘3’9_'1\”2) choices forlp > 1,/4 >0...,/s>0,> /i =logN
= Why?
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Combinatorial explanation

There is one-to-one correspondence between choices for /; and
(s + log N — 2)-bit binary string t with s — 1 zeros:
m /; is the number of "1" between (i + 1)st and (i + 2)nd zeros in the
string 0110
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Combinatorial explanation

There is one-to-one correspondence between choices for /; and
(s + log N — 2)-bit binary string t with s — 1 zeros:
m /; is the number of "1" between (i + 1)st and (i + 2)nd zeros in the
string 0110
m iflogN =3,s=5,t=001100, then

01t0 = 010011000

andl0:1,/1 :0,/2:2,/3:0,/420
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Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P
m (S19972) choices for ky, .. ., Is
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Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P
m (S19972) choices for ky, .. ., Is
m after that vy, . .., vs are completely determined and there are at

most C choices for each P;. Hence, at most C5t! ways to choose
PO, ey Ps.
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Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P

m (S19972) choices for ky, .. ., Is

m after that vy, . .., vs are completely determined and there are at
most C choices for each P;. Hence, at most C5t! ways to choose
Po,...,Ps.

n (5:_;’1() ways to choose K, ..., Ks, ks < ks_1 < ... < ko, ki € [0, K]
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Number of possible delay sequences Ny

There are many possible delay sequences!
m N? choices for delay path P

m (S19972) choices for ky, .. ., Is
m after that vy, . .., vs are completely determined and there are at
most C choices for each P;. Hence, at most C5t! ways to choose
PO, ey Ps.
n (5:_;’1() ways to choose K, ..., Ks, ks < ks_1 < ... < ko, ki € [0, K]
m Why?

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 51/65



Combinatorial explanation

There is one-to-one correspondence between choices for k; and
(s + K)-bit binary string u with s + 1 zeros:

B K; is the number of "1" to the left of the (s + 1 — i)th zero in the
string 1u

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 52 /65



Combinatorial explanation

There is one-to-one correspondence between choices for k; and
(s + K)-bit binary string u with s + 1 zeros:

B K; is the number of "1" to the left of the (s + 1 — i)th zero in the
string 1u
mifs+1=6K=1,u=000110010, then

1u=1000110010

and kg =1,ki =1,k =1,ks=3,ky =3, ks =4
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Number of possible delay sequences Ny

Ny = N2 s+logN -2 oSt s+ K
s—1 S+ 1
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Probability to find an active delay sequence

NgPr(r(P;) = k; for all i) = NgK~(s*1)
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Proof: results

This probability becomes smaller than o(N~7), when the number of
packets is

0(C),if C > '09 N

s+1=

O(log N/ log < >) if C < 'OgN
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Proof: final details

With probability 1 — o(N~7)

O(C) +logN, |fC>|°gN
T<s+logN =
IogN+O(IogN/Iog<| >) fC<|092N
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Can we use another contention-resolution protocol?

A.Gubichev (Ferienakademie im Sarntal 2008  Online-routing on the butterfly network Sept. 2008 57 /65



Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on the

history of contending packets, it doesn’t depend on information about
destinations.
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Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on the

history of contending packets, it doesn’t depend on information about
destinations.

m FIFO
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Nonpredicting Contention-Resolution Protocols

Contention is resolved by a deterministic algorithm based on the

history of contending packets, it doesn’t depend on information about
destinations.

m FIFO
m random-rank protocol is not non-predictive

m if we use a specific setting for random keys in RRP, it is
non-predictive
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History of edge activity

m R — routing problem
m Q — non-predictive contention-resolution protocol
m H(R, Q) = {(e, t)| packet traverses edge e at step t}
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Properties of H(R, Q) (1/2)

Lemma 1. Q; R and R’ with p packets per input. H(R, Q) = H(R', Q)
for steps in [1, T| = the location of packets after T steps of R is the
same as the location of packets after T steps of R’

Proof.
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Properties of H(R, Q) (1/2)

Lemma 1. Q; R and R’ with p packets per input. H(R, Q) = H(R', Q)
for steps in [1, T| = the location of packets after T steps of R is the
same as the location of packets after T steps of R’

Proof.

m 7 =0: done
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Properties of H(R, Q) (1/2)

Lemma 1. Q; R and R’ with p packets per input. H(R, Q) = H(R', Q)
for steps in [1, T| = the location of packets after T steps of R is the
same as the location of packets after T steps of R’

Proof.
m 7 =0:done
m 7 — 1+ T:the same packets move forward the same direction for
R and R’

Corollary. R# R' = H(R,Q) # H(R', Q)
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Properties of H(R, Q) (2/2)

Fact. Q, Q'; R with p packets per input = 3R’ with p packets per input:
H(R,Q) = H(R, Q)
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Running time of non-predictive protocol

Theorem. n7(Q)— number of problems for which the greedy
algorithm runs in T steps using Q. Then nr(Q) = ny(Q') for any
T>00QQ.

Proof.

m NPN different routing problems with p packets per input
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Running time of non-predictive protocol

Theorem. n7(Q)— number of problems for which the greedy
algorithm runs in T steps using Q. Then nr(Q) = ny(Q') for any
T>00QQ.

Proof.

m NPN different routing problems with p packets per input
m NPN different histories
m the set of all histories is the same for any Q' as it is for Q

m each history defines the running time = nr(Q) = nr(Q’) for any
T>0
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What does it mean?

m the distribution of running time T is the same for any nonpredictive
protocol

m the average time is the same
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Can we use another protocol?

We can set priority keys in RRP such that T will be at most
log N + O(p) + o(log N)

= greedy algorithm has the same average time T for any
nonpredictive protocol.
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Conclusion

m "Typical" routing problem (in a mathematical sense) is likely to
have reasonable running time

m "Typical" routing problem (in practice: with bit-reversal and
transpose permutations) has very bad estimation of running time
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