Online-routing on the butterfly network Probabilistic analysis

Andrey Gubichev

Ferienakademie im Sarntal 2008 Saint-Petersburg State University

September 2008

- Useful definitions
- Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

Useful definitions

Greedy algorithm efficiency and worst cases

- 2 The Average-Case Behavior
 - Bounds on congestion
 - Bounds on running time
- 3 Conclusion

The r-dimensional butterfly consists of

- (r + 1)2^r nodes and
- \blacksquare $r2^{r+1}$ edges

The r-dimensional butterfly consists of

- (r + 1)2^r nodes and
- $r2^{r+1}$ edges
- such that
 - node is $\langle w, i \rangle$: *i* is a level, *w r*-bit number of row
 - $\langle w, i \rangle$ and $\langle w', i' \rangle$ are linked \Leftrightarrow (w=w' OR w and w' differ in *i*th bit) AND i'=i+1

Example: three-dimensional butterfly

πп

- routing N packets
- start node $\langle u, 0 \rangle$ on level 0
- destination node $\langle \pi(u), \log N \rangle$ on level log N
 - $\pi : [1, N] \longrightarrow [1, N]$ is a permutation
- on-line algorithms: no global controller

- the unique path of length log *N* from $\langle u, 0 \rangle$ to $\langle \pi(u), \log N \rangle$ greedy path
- greedy routing algorithm: each packet follows its greedy path

- the unique path of length log *N* from $\langle u, 0 \rangle$ to $\langle \pi(u), \log N \rangle$ greedy path
- greedy routing algorithm: each packet follows its greedy path
- main problem: routing many packets in parallel ⇒ many greedy paths might pass through a single node or edge: *Congestion*!

Useful definitions

Greedy algorithm efficiency and worst cases

- 2 The Average-Case Behavior
 - Bounds on congestion
 - Bounds on running time
- 3 Conclusion

The algorithm that chooses greedy paths, can solve any routing problem in ${\cal O}(\sqrt{N})$

• if π is the bit-reversal permutation:

$$\pi(u_1\cdots u_{\log N})=u_{\log N}\cdots u_1$$

then the greedy algorithm will take $O(\sqrt{N})$ steps (and congestion $C \ge \sqrt{N}/2$)

10/65

Sept. 2008

• if π is the bit-reversal permutation:

$$\pi(u_1\cdots u_{\log N})=u_{\log N}\cdots u_1$$

then the greedy algorithm will take $O(\sqrt{N})$ steps (and congestion $C \ge \sqrt{N}/2$)

the same result holds for transpose permutation

$$\pi(u_1\cdots u_{\frac{\log N}{2}}u_{\frac{\log N}{2}+1}\cdots u_{\log N})=u_{\frac{\log N}{2}+1}\cdots u_{\log N}u_1\cdots u_{\frac{\log N}{2}}$$

Example: bit-reversal permutation

- we need to route packets in the butterfly
- all packets start at level 0
- each packet has a destination at level log *N*, considered as *random*

- we need to route packets in the butterfly
- all packets start at level 0
- each packet has a destination at level log N, considered as random
- p is the number of packets at each input
 - if p = 1: standard *N*-packet routing problem
 - if $p = \log N$: network is more heavily loaded

- obtain bounds on congestion
- obtain bounds on running time

- Useful definitions
- Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

P_r(v) = Probability(r or more packet paths pass through node v on level i), r > 0, 0 ≤ i ≤ log N

we are randomizing routing problems!

- P_r(v) = Probability(r or more packet paths pass through node v on level i), r > 0, 0 ≤ i ≤ log N
 - we are randomizing routing problems!
- at most p2ⁱ packets pass through v
- there are 2^{log N-i} choices of destinations that will cause these packets to pass through v
 - \implies each of $p2^i$ pass through v with probability 2^{-i}

Example: choices of inputs and outputs

Upper bound on $\overline{P_r(v)}$

$$P_r(v) \leq {\binom{p2^i}{r}}{(2^{-i})^r} \leq \left(\frac{p2^ie}{r}\right)^r 2^{-ir} = \left(\frac{pe}{r}\right)^r$$

- $P_r(v) \leq \left(\frac{pe}{r}\right)^r$
 - The bound does not depend on v or on i

 $P_r(v) \leq \left(\frac{pe}{r}\right)^r$

■ The bound does not depend on *v* or on *i* ⇒ for any random routing problem *r* or more packets pass through any node with probability $\leq N \log N \left(\frac{pe}{r}\right)^r$

 $P_r(v) \leq \left(\frac{pe}{r}\right)^r$

- The bound does not depend on *v* or on *i* ⇒ for any random routing problem *r* or more packets pass through any node with probability $\leq N \log N \left(\frac{pe}{r}\right)^r$
- we can make this probability be very low by choosing large *r*

if
$$p \ge \frac{\log N}{2}$$
, we choose $r = 2ep = O(p)$:
 $N \log N \left(\frac{pe}{r}\right)^r \le N \log N \left(\frac{1}{2}\right)^{e \log N} = N^{1-e} \log N \le 1/N^{3/2}$

• if
$$p \le \frac{\log N}{2}$$
, we choose $r = \frac{2e \log N}{\log \left(\frac{\log N}{p}\right)}$ and omit technical details:
 $N \log N \left(\frac{pe}{r}\right)^r \le 1/N^2$

- bound for $P_r(v)$
- it does not depend on v and $i \Rightarrow$ bound for all nodes
- it decreases when r increases
- choose *r* (for different *p*) large enough to make the bound small: $1/N^{3/2}$

For all but at most a $1/N^{3/2}$ fraction of the possible routing problems at most *C* packets pass through each node during a greedy routing where

$$C = egin{cases} 2ep, ext{ if } p \geq rac{\log N}{2} \ 2e\log N / \log \left(rac{\log N}{p}
ight), ext{ if } p \leq rac{\log N}{2} \end{cases}$$

With high probability the congestion in a random problem is at most

$$C = O(p) + o(\log N)$$

Corollary. For any $\alpha > 0$, the congestion of all but $1/N^{\alpha}$ of the possible routing problems with *p* packets per input in a log *N*-dimensional butterfly is at most $O(\alpha p) + o(\alpha \log N)$

- p = 1: the maximum number of packets that pass through any node is O(log N/ log log N) with high probability
 - compare this bound with the worst case congestion: $O(\sqrt{N})$

25/65

Sept. 2008

- p = 1: the maximum number of packets that pass through any node is O(log N/ log log N) with high probability
 - compare this bound with the worst case congestion: $O(\sqrt{N})$
- p = Θ(log N): at most O(log N) packets will pass through any node with high probability

The time needed to deliver every packet to its destination is at most $(C-1) \log N$ in most routing problems, where

 $C = O(p) + o(\log N)$

The time needed to deliver every packet to its destination is at most $(C-1) \log N$ in most routing problems, where

 $C = O(p) + o(\log N)$

Now we will show that the running time is $\log N + O(p) + o(\log N)$ for almost all routing problems.

- Useful definitions
- Greedy algorithm efficiency and worst cases

2 The Average-Case Behavior

- Bounds on congestion
- Bounds on running time

3 Conclusion

27/65

Sept. 2008
If two or more packets are waiting to exit a node, we need to specify a protocol for deciding which packet will move forward out of the node first.

- random priority key $r(P) \in [1, K]$ for each packet P
- define total order on the packets: t(P) is the rank of packet P

29/65

Sept. 2008

- random priority key $r(P) \in [1, K]$ for each packet P
- define total order on the packets: t(P) is the rank of packet P

define
$$w(P) = (r(P), t(P))$$

order w(P):

if
$$P \neq P'$$
 we say that $w(P) < w(P') \Leftrightarrow (r(P) < r(P'))$ OR
 $(r(P) = r(P') \text{ AND } t(P) < t(P'))$

29/65

Sept. 2008

- random priority key $r(P) \in [1, K]$ for each packet P
- define total order on the packets: t(P) is the rank of packet P

define
$$w(P) = (r(P), t(P))$$

order w(P):

if $P \neq P'$ we say that $w(P) < w(P') \Leftrightarrow (r(P) < r(P'))$ OR (r(P) = r(P') AND t(P) < t(P'))

■ the packet with smallest *w* exits the node first

Why do we need both r and t?

Why do we need both r and t?

- **r** is random \Rightarrow sometimes not unique
- t is not random
- w(P) = (r(P), t(P)) is random and unique

30 / 65

Sept. 2008

Figure: initial configuration: (destination, name, random key)

If we use random-rank protocol, the congestion equals *C*, then the running time is *T* with probability at least $1 - 1/N^7$, where

$$\mathcal{T} = \begin{cases} O(C), \text{ if } C \geq \frac{\log N}{2} \\ \log N + O(\log N / \log \left(\frac{\log N}{C}\right)), \text{ if } C \leq \frac{\log N}{2} \end{cases}$$

We consider routing problem with congestion number C, random keys r(P) and running time T. We will show that T satisfies the bound from the theorem.

■ P_0 is the last packet to reach its destination v_0 , it was last delayed at the node v_1 , l_0 is the number of steps in the path $v_1 \rightarrow v_0$

Example: delay path

- P_0 is the last packet to reach its destination v_0 , it was last delayed at the node v_1 , l_0 is the number of steps in the path $v_1 \rightarrow v_0$
- P_1 is the packet responsible for delaying P_0 . P_1 itself was delayed at the node v_2 , l_1 is the number of steps in the path $v_2 \rightarrow v_1$

Example: delay path

- P_0 is the last packet to reach its destination v_0 , it was last delayed at the node v_1 , l_0 is the number of steps in the path $v_1 \rightarrow v_0$
- P_1 is the packet responsible for delaying P_0 . P_1 itself was delayed at the node v_2 , l_1 is the number of steps in the path $v_2 \rightarrow v_1$
- we proceed in a similar fashion until the sequence of delays ends at v_s

42 / 65

Sept. 2008

Example: delay path

- P_0 is the last packet to reach its destination v_0 , it was last delayed at the node v_1 , l_0 is the number of steps in the path $v_1 \rightarrow v_0$
- P_1 is the packet responsible for delaying P_0 . P_1 itself was delayed at the node v_2 , l_1 is the number of steps in the path $v_2 \rightarrow v_1$
- we proceed in a similar fashion until the sequence of delays ends at v_s. P_s moves forward from v_s during step 1.
- **•** $\mathbf{P} = v_s \rightarrow \ldots \rightarrow v_1 \rightarrow v_0$ is the delay path

$$T - I_0 - I_1 - \ldots - I_{s-1} - (s-1) = 1$$
 and
 $I_0 + \ldots + I_{s-1} = \log N \Rightarrow s = T - \log N$

a delay path P

- a delay path P
- integers $l_0 \ge 1, l_1 \ge 0, \dots, l_{s-1} \ge 0, l_0 + \dots + l_{s-1} = \log N$

- a delay path P
- integers $l_0 \ge 1, l_1 \ge 0, \dots, l_{s-1} \ge 0, l_0 + \dots + l_{s-1} = \log N$
- nodes v_0, v_1, \ldots, v_s : v_i is the node of **P** on level log $N I_0 \ldots I_{s-1}$

- a delay path P
- integers $l_0 \ge 1, l_1 \ge 0, \dots, l_{s-1} \ge 0, l_0 + \dots + l_{s-1} = \log N$
- nodes v_0, v_1, \ldots, v_s : v_i is the node of **P** on level log $N I_0 \ldots I_{s-1}$
- different packets P_0, P_1, \ldots, P_s : the greedy path for P_i contains v_i

- a delay path P
- integers $l_0 \ge 1, l_1 \ge 0, \dots, l_{s-1} \ge 0, l_0 + \dots + l_{s-1} = \log N$
- nodes v_0, v_1, \ldots, v_s : v_i is the node of **P** on level log $N I_0 \ldots I_{s-1}$
- different packets P_0, P_1, \ldots, P_s : the greedy path for P_i contains v_i
- keys k_0, k_1, \ldots, k_s for the packets: $k_s \leq k_{s-1} \leq \ldots \leq k_0$, $k_i \in [0, K]$.

A delay sequence is *active*, if $r(P_i) = k_i$ for $0 \le i \le s$.

Example: active delay sequence

$\Pr(T \leq s + \log N) \leq$

\leq Pr(there is an active delay sequence with s + 1 packets)

N² choices for delay path P

49/65

Sept. 2008

N² choices for delay path P

•
$$\binom{s+\log N-2}{s-1}$$
 choices for $l_0 \ge 1, l_1 \ge 0 \dots, l_s \ge 0, \sum l_i = \log N$

■
$$N^2$$
 choices for delay path **P**
■ $\binom{s+\log N-2}{s-1}$ choices for $l_0 \ge 1, l_1 \ge 0..., l_s \ge 0, \sum l_i = \log N$
■ Why?

There is one-to-one correspondence between choices for I_i and $(s + \log N - 2)$ -bit binary string *t* with s - 1 zeros:

I_i is the number of "1" between (*i* + 1)st and (*i* + 2)nd zeros in the string 01*t*0

50 / 65

Sept. 2008

There is one-to-one correspondence between choices for I_i and $(s + \log N - 2)$ -bit binary string *t* with s - 1 zeros:

- *I_i* is the number of "1" between (*i* + 1)st and (*i* + 2)nd zeros in the string 01*t*0
- if log *N* = 3, *s* = 5, *t* = 001100, then

01t0 = 010011000

and
$$l_0 = 1, l_1 = 0, l_2 = 2, l_3 = 0, l_4 = 0$$

- N² choices for delay path P
- $\binom{s+\log N-2}{s-1}$ choices for I_0, \ldots, I_s

- N² choices for delay path P
- $\binom{s+\log N-2}{s-1}$ choices for I_0, \ldots, I_s
- after that v₀,..., v_s are completely determined and there are at most C choices for each P_i. Hence, at most C^{s+1} ways to choose P₀,..., P_s.

- N² choices for delay path P
- $\binom{s+\log N-2}{s-1}$ choices for I_0, \ldots, I_s
- after that v₀,..., v_s are completely determined and there are at most *C* choices for each P_i. Hence, at most C^{s+1} ways to choose P₀,..., P_s.
- $\binom{s+K}{s+1}$ ways to choose $k_0, \ldots, k_s, k_s \le k_{s-1} \le \ldots \le k_0, k_i \in [0, K]$

There are many possible delay sequences!

- N² choices for delay path P
- $\binom{s+\log N-2}{s-1}$ choices for I_0, \ldots, I_s
- after that v₀,..., v_s are completely determined and there are at most *C* choices for each P_i. Hence, at most C^{s+1} ways to choose P₀,..., P_s.
- $\binom{s+K}{s+1}$ ways to choose $k_0, \ldots, k_s, k_s \le k_{s-1} \le \ldots \le k_0, k_i \in [0, K]$ ■ Why?

There is one-to-one correspondence between choices for k_i and (s + K)-bit binary string u with s + 1 zeros:

■ k_i is the number of "1" to the left of the (s + 1 - i)th zero in the string 1*u*

52/65

Sept. 2008

There is one-to-one correspondence between choices for k_i and (s + K)-bit binary string u with s + 1 zeros:

- k_i is the number of "1" to the left of the (s + 1 i)th zero in the string 1u
- if *s* + 1 = 6, *K* = 1, *u* = 000110010, then

1u = 1000110010

and $k_0 = 1, k_1 = 1, k_2 = 1, k_3 = 3, k_4 = 3, k_5 = 4$

Number of possible delay sequences N_d

$$N_d = N^2 \binom{s + \log N - 2}{s - 1} C^{s + 1} \binom{s + K}{s + 1}$$

$$N_d \Pr(r(P_i) = k_i \text{ for all } i) = N_d K^{-(s+1)}$$

Sept. 2008 54 / 65

This probability becomes smaller than $o(N^{-7})$, when the number of packets is

$$s+1 = \left\{ egin{array}{c} O(C), \mbox{ if } C \geq rac{\log N}{2} \ O(\log N / \log \left(rac{\log N}{C}
ight)), \mbox{ if } C \leq rac{\log N}{2} \end{array}
ight.$$

With probability $1 - o(N^{-7})$

$$\mathcal{T} \leq s + \log N = egin{cases} O(\mathcal{C}) + \log N, ext{ if } \mathcal{C} \geq rac{\log N}{2} \ \log N + O(\log N / \log \left(rac{\log N}{\mathcal{C}}
ight)), ext{ if } \mathcal{C} \leq rac{\log N}{2} \end{cases}$$

Can we use another contention-resolution protocol?

57 / 65

Sept. 2008

Contention is resolved by a deterministic algorithm based on the history of contending packets, it doesn't depend on information about destinations.

Contention is resolved by a deterministic algorithm based on the history of contending packets, it doesn't depend on information about destinations.

FIFO

Contention is resolved by a deterministic algorithm based on the history of contending packets, it doesn't depend on information about destinations.

- FIFO
- random-rank protocol is not non-predictive
- if we use a specific setting for random keys in RRP, it is non-predictive

- *R* routing problem
- Q non-predictive contention-resolution protocol
- $H(R, Q) = \{(e, t) | \text{ packet traverses edge } e \text{ at step } t\}$

Lemma 1. *Q*; *R* and *R'* with *p* packets per input. H(R, Q) = H(R', Q) for steps in $[1, T] \Rightarrow$ the location of packets after *T* steps of *R* is the same as the location of packets after *T* steps of *R'* **Proof.**

Lemma 1. *Q*; *R* and *R'* with *p* packets per input. H(R, Q) = H(R', Q) for steps in $[1, T] \Rightarrow$ the location of packets after *T* steps of *R* is the same as the location of packets after *T* steps of *R'* **Proof.**

■ *T* = 0: done

Lemma 1. *Q*; *R* and *R'* with *p* packets per input. H(R, Q) = H(R', Q) for steps in $[1, T] \Rightarrow$ the location of packets after *T* steps of *R* is the same as the location of packets after *T* steps of *R'* **Proof.**

■ *T* = 0: done

• $T - 1 \mapsto T$: the same packets move forward the same direction for R and R'

Corollary. $R \neq R' \Rightarrow H(R, Q) \neq H(R', Q)$

Fact. *Q*, *Q*'; *R* with *p* packets per input $\Rightarrow \exists R'$ with *p* packets per input: H(R, Q) = H(R', Q')

61/65

Sept. 2008

Theorem. $n_T(Q)$ — number of problems for which the greedy algorithm runs in *T* steps using *Q*. Then $n_T(Q) = n_T(Q')$ for any T > 0, Q, Q'. **Proof.**

• N^{pN} different routing problems with *p* packets per input

Theorem. $n_T(Q)$ — number of problems for which the greedy algorithm runs in *T* steps using *Q*. Then $n_T(Q) = n_T(Q')$ for any T > 0, Q, Q'. **Proof.**

- N^{pN} different routing problems with p packets per input
- N^{pN} different histories

Sept. 2008

62 / 65

Theorem. $n_T(Q)$ — number of problems for which the greedy algorithm runs in *T* steps using *Q*. Then $n_T(Q) = n_T(Q')$ for any T > 0, Q, Q'. **Proof.**

• N^{pN} different routing problems with *p* packets per input

- N^{pN} different histories
- the set of all histories is the same for any Q' as it is for Q

Theorem. $n_T(Q)$ — number of problems for which the greedy algorithm runs in *T* steps using *Q*. Then $n_T(Q) = n_T(Q')$ for any T > 0, Q, Q'. **Proof.**

• N^{pN} different routing problems with *p* packets per input

- N^{pN} different histories
- the set of all histories is the same for any Q' as it is for Q

• each history defines the running time $\Rightarrow n_T(Q) = n_T(Q')$ for any T > 0

- the distribution of running time T is the same for any nonpredictive protocol
- the average time is the same

63 / 65

Sept. 2008

We can set priority keys in RRP such that T will be at most $\log N + O(p) + o(\log N)$ \Rightarrow greedy algorithm has the same average time T for any nonpredictive protocol.

- "Typical" routing problem (in a mathematical sense) is likely to have reasonable running time
- "Typical" routing problem (in practice: with bit-reversal and transpose permutations) has very bad estimation of running time

