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We want to calculate the SINE:
1. Reducing theinterval (R, Float’'Range,...) to [-7,5¢
2. Reducing the interval to [-7, 5]
3. Reducing the interval to [-%, %]

4. Calculating the sine with . ..
(a) ...a Taylor Polynomial

(b) ...a Chebyshev Polynomial



1. Reducing the interval to [—%,37”]

We need a function y = f(x) with 0 <y < 27 (one period
of sine) and

sinx = siny.

So how can we do that? Why is this possible?



The function is called entier. It maps every n € R to

the biggest integer 1 with i <n. So our formula is
X

siny = sin(x — 27T * entierz—) = sin x.
T

As it is much better to have the interval [-7, 37”] instead
of [0,27t], we change the above line to

x+%
27T
7T
x+7).
27T

)

siny = sin(x — 277 x entier

y = (x — 27 *entier



2. Reducing the interval to -7, 7]

Now we have the sine on the interval [-7, 37”]. The sine
is symmetric to y = 5 so we can reduce the interval to
[—5,%] (next slide).






The formula for that is

n—y if5<y

T~
2

To calculate the sine in in the interval we will use a
Taylor Polynominal. But before, we will reduce the
interval some more.



3. Reducing the interval to [-Z, 7]

From the addition theorems we get the following term:

sin(3u) = 3sinu — 4sin’ u.

With z = 3u and some small changes we get:

4
sinz = 3(1 — gsim2 %) sing.

This can easily be done with the two addition theorems
and the Pythagoras

sinacosb + sinbcosa

sin(a + b)
cos(a+b) = cosacosb—sinasinb
1 = sin?(x) + cos?(x)



sin(3u)

sin(u + 2u)
sin 1 cos 2u + sin2u cos u
sinu(cos(u +u)) + sin(u + u) cos u

sin u(cos” u — sin?
2 3

u) + (2sinu cosu) cos u

u+251nucoszu

2

U — sin
2

sSin 1 COS
U — sin

sinu(3(1 — sin?
2

sin 1(3 cos u)

2

u) —sin“ u)

sinu(3 — 3sin“ u — sin2u)

3sinu — 4sin 3u



4. (a) Calculating the sine with a Taylor

Polynomial

Now we can calculate the sine with a Taylor Polynomial
(for example). This can now be done with very little
effort since we are close to 0 (we take xp =0, then we
get an odd function).



A Taylor Polynomial of degree n is defined

T = LSO xx0)”
_o"

f(x) = Tulx) + Ru(x, )

Ru(v8) = oy /@)« (x =30,

Since we do this for a calculator we want to have 7
digits accuracy. So Ry(x,&) has to be < 0.5%1077.

Our xg =0, since it is the centre of our interval, f(x) =
sinx, and we try it for n = 8.



k=0
51 L« k
Ts(u) = Y 7 fO0)xu
k=0
= U0 ka4 Sk FD(0) £ 12
BT 2!
1 1
o # SO xu + x fO0) et 1
1 2, 1 3,1 4
= 1*1*u—|—§>x<0>ku —|—§>1<(—1)>1<u —|—E*0>I<I/t +...
- 1/13 u5 1/[7
TR

— 11 — 0.16666666671° + 0.0083333333331° — 0.00019841269841”



1

Rn(x,&) = (n+1) s« fOTD(E) 5 (x — xg)™ T
Rg(u,C)| = !—*sm() « ()]
_ !COS(C)I # ()] _ [uP
9! - 9!
relative error = |p(u)._ sin(u)
sin(u)]
Rg| _ IRl _ 11fuf®
|sin(u)| — 0.95|u| — 9!

1.1
< a(%)8 ~0.18%1077 < 05%1077



Now we have to write that algorithm optimized for the
computer:

f = x%0.15915494

7 = X —entier(¥+ 0.25)

. {g ,if—0.25 < 7 <025
05—7 ,if 0.25<7

0 = zZZ

w = Z2(3.32464499 + v(—2.43058747
+v(0.53308748 — v x 0.0556757)))
sinx = w(1.88988158 — ww)

We have reduced the sine to 8 multiplications and 7
additions.



4. (b) Calculating the sine with a
Chebyshev Polynomial

There are other ways then using a Taylor Polynomial.
For example can a Chebyshev Polynomial be used, this
IS better since with the same number of terms it is more
accurate. Since this is a much more complicated thing,
we have to learn some more basics.



Optimal polynomial approximations

We want to approximate a function F(x) in the closed
interval [a,b] by means of a polynomial of degree < n.

1. the polynomial P,(x) of degree < n for which

I[nax|Pn(x) — F(x)| is as small as possible, if it is ab-
a,

solute error that we are interested in (minimax-
absolute-error), or

2. the polynomial P,(x) of degree < n for which
max|P”<’;>_F(x)| is as small as possible, if it is relative
a,b] (x)

error that we are interested in (minimax-relative-
error).




Chebyshev’s theorem on polynomial

approximations

Let u(x) denote a function continuous in a closed, finite
interval [a,b], and let v(x) denote a function continuous
and nonzero in [a,b]. Let V,; denote the set of polyno-
mials of degree < n. There exists a unique polynomial
P;(x) in V,; such that

P P
max | ”(x)—u(x)|: min max | n(%)

ap] | 0(x) Pu(x)inVy [ab] = 0(X) — ()l




Let Py(x) denote a polynominal in V,;. Then Py(x) is
P (x) if and only if there exist N > n+2 points in [a,b],

X] < x5 <x3<--- <Xy

such that
P (xg) ) k
2k ) = (0
v(xl’(“) k H
k=1,2,3,...,N,
where
P
] = max| 22 )

ab]  v(x)



A proof of this theorem is beyond the scope of this lec-

ture. Listeners wishing to study the proof can find one
in Achieser (1956)*.

Two ways of construing the foregoing theorem are of
interest to us:

*Achieser, N. I. (1956): Theory of Approximation. Ungar, New
York. english translation by C. J. Hyman.



1. With o(x) = 1 and u(x) = F(x), the function 1;"(%> -
u(x) becomes the absolute-error function P,(x) —
F(x). In this case, the theorem asserts that there
exists a unique polynimial P;(x) of degree < n that
approximates F(x) with minimal absolute error in
la,b]. The theorem further asserts that P;(x) is
uniquely characterized by the fact that the absolute-
error finction Pyx(x) — F(x) possesses at least n + 2
extreme points in [a,b] at which it is alternately pos-
itive and negative and at which the magnitudes of

P;(x) — F(x) are equal.




2. With v(x) = F(x) and u(x) = 1, where now it is as-
sumed that F(x) # 0 in [a,b], the function 1;”((;)) — u(x)
becomes the relative-error function P”(’;)(;)F(x). In

this case the theorem asserts that there exists a

unique polynomial P;(x) of degree < n that approx-

imates F(x) with minimax relative error in *[a,

b]*. This P;(x) is uniquely characterized by the fact

that the relative-error function Pg(?(j(x) posesses at

least n + 2 extreme points in [4,b] at which it is al-
ternatively positive and negative and at which the

magnitude of Pﬁ(’?&f(x) are equal.




An argument for which the maximum magnitude of
the error function is attained is called critical point,
of the approximation. A minimax polynomial approxi-
mation to a function is specifically associated with an
integer n and an approximation interval [a,b]. Gener-
ally, there is also a difference between the the function
with minimax-absolute-error and the one with minimax-
relative-error.

We want a a function of the degree 8 in the interval

[—%, %] and we want minimax-absolute-error.



Remez’ method for polynomial

approximations

This is one of two methods by E. Ya. Remez and is
called Remez’ second method.

We want to approximate F(x) in [a,b] and want to de-
termine the polynomial P;(x) of the degree < n that
approximates F(x) with minimax absolute error in [a,b].
Let Pj(x) = aj+ajx+---+ayx". For the sake of sim-
plicity, we assume that P;(x) — F(x) is a standard error
function. Then P;(x) — F(x) possesses exactly n + 2 crit-
ical points in |[a,b], including a and b. Let these be
denoted by x;(",k: 1,2,...,n and labelled so that

Ak * * * _
a=x] <xy<x3<---<x,,,=>0



Then we know by chebyshev's theorem that

ay +aixi 4+ an(x)" — F(x)f = (=1,
k=1,2,...,n+2,

where

|u*| = max|Py (x) — F(x)].
|a,b]



The objective in this method is to compute iteratively
the x;'s, u's, andthe coefficients of P;(x).

1. Initially select n+2 numbers x;,k=1,2,...,n1+42, such
that

a=xi‘<x§<x§<---<x;§+2:b.



2. Compute the coefficients of a polynomial Py(x) =
agp+ajx +---+ayx™ and the number u by solving the
system of n + 2 linear equations

a9+ a1X + -+ an(x)" — (=1)Fu = F(xp),
k=1,2,...,n+2,

for n 42 unknowns ag,aq,...,4,, and u.

3. Locate the extreme points in [a,b] of the absolute-
error function Py(x) — F(x). For the sake of simplici-
ty, we assume that there are exactly n + 2 extreme
points, including a and b. Let these be labelled
v, k=1,2,...,n4+2, where

a=y1 <y2<yz<---<Ypy2 ="



4. Replace x; with y;, for k =1,2,...,n+2, and repeat
the sequence of steps given above beginning with
step (2).



X; converges to x;{", a;, converges to a]j, and u converges
to u*. The convergence is quadric. A good algorithm
to compute the starting values in step 1 is

1 n—k+2)r 1
xkzicos( n+1) +§(b+a),

k=1,2,...,n+2.

If F(x) is an even or an odd function and the interval
is of the form [—a,a], you can use |0,a] instead.



And now we will have fun using Maple.

Enjoy!



