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Affine Varieties

Problem: Given a set of polynomials f1, . . . , fr ∈ k[x1, . . . , xn], what are the common

zeroes?

Definition 1 Let k be a field, and let f1, . . . , fr be polynomials in k[x1, . . . , xn]. Then

we set

V(f1, . . . , fr) = {(a1, . . . , an) ∈ kn : fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ r}.

We call V(f1, . . . , fr) the affine variety (or simply variety) defined by f1, . . . , fr .
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Examples of affine varieties (in R3)

• V(z): xy-plane

• V(x, y): z-axis

• V(x2 + y2 − z2): cone
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Ideals

We now consider the set of all polynomials vanishing on a given variety.

Definition 2 Let V ⊂ kn be an affine variety. The we set

I(V ) = {f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

I(V ) is an ideal in k[x1, . . . , xn]. This means:

Definition 3 A subset I of a ring R is an ideal if:

(i) 0 ∈ I .

(ii) If f, g ∈ I , then f + g ∈ I .

(iii) If f ∈ I and h ∈ R, then hf ∈ I .

An ideal is closed under linear combinations with R.
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Ideals (2)

Every ideal I ⊂ k[x1, . . . , xn] can be generated by linear combinations of a finite set of

polynomials called basis (Hilbert’s Basis Theorem):

I = 〈f1, . . . , fr〉 = {A1f1 + . . . + Arfr : f1, . . . , fr ∈ k[x1, . . . , xn]}

An ideal generated by a single polynom is called a principal ideal .

Examples:

• 〈x〉: The set of all polynomials divisible by x

• 〈1〉 = k[x1, . . . , xn]
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The Ideal-Variety Correspondence

The variety V(I) of a whole ideal I = 〈f1, . . . , fr〉 is the same as the variety of its

generators V(f1, . . . , fr).

Therefore, we have maps

V : ideals 7→ affine varieties

and

I : affine varieties 7→ ideals

which give us a correspondence between ideals and varieties.

Is this correspondence one-to-one?

• V(I(V )) = V , i.e. I is one-to-one

• Different ideals can give the same variety:

– 〈x〉 6= 〈x2〉, but V(x) = V(x2) = {0}
– If k isn’t algebraically closed, e.g. k = R:

I1 = 〈1〉, I2 = 〈1 + x2〉, I3 = 〈1 + x2 + x4〉 are different ideals, but

V(I1) = V(I2) = V(I3) = ∅
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The Weak Nullstellensatz

Theorem 1 Let k be an algebraically closed field and let I ⊂ k[x1, . . . , xn] be an ideal

with V(I) = ∅. Then I = k[x1, . . . , xn].

We can check whether a set of polynomials f1, . . . , fr ∈ k[x1, . . . , xn] has one or

more common zeroes (consistency problem ) if we check whether the ideal

〈f1, . . . , fr〉 generated by them is not equal to k[x1, . . . , xn].
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Gröbner Bases

A basis of an ideal 〈f1, . . . , fr〉 is a Gröbner Basis G(f1, . . . , fr) for some monomial

order if the ideal given by the leading terms of all elements of the ideal is itself generated

by the leading terms of the basis.

A reduced Gröbner Basis Gred is a Gröbner Basis where the coefficients of the leading

terms are 1 and no monomial in any element of the basis can be generated by the

leading terms of the rest of the basis.
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Properties of Gr öbner Bases:

• The remainder obtained when applying the multivariate division algorithm is

independent of the ordering of the polynomials.

• The reduced Gröbner Basis is unique up to the monomial ordering, and can therefore

be used to check the equality of two ideals.

• When using lexicographic order with x1 > x2 > . . . > xn, the intersection of an

ideal I with the subring k[xm, xm+1, · · · , xn] is generated by the intersection of

the Gröbner Basis G(I) with k[xm, xm+1, · · · , xn] (elimination property ).

A Gröbner Basis can be computed using Buchberger’s Algorithm .
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The Consistency Problem

A set of polynomials f1, . . . , fr ∈ k[x1, . . . , xn] has no common zeroes iff

〈f1, . . . , fr〉 = k[x1, . . . , xn]

⇔ 1 ∈ 〈f1, . . . , fr〉

This is the case if the reduced Gröbner Basis Gred(f1, . . . , fr) = {1}.
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Hilbert’s Nullstellensatz

We have seen that 〈x〉 and 〈x2〉 lead to the same variety.

In general, a power of a polynomial vanishes on the same set as the original polynomial.

Hilbert’s Nullstellensatz states that (over an algebraically closed field) this the only reason

that two different ideals lead to the same variety:

Theorem 2 Let k be an algebraically closed field. If f, f1, . . . , fr ∈ k[x1, . . . , xn] are

such that f ∈ I(V(f1, . . . , fr)), then there exists an integer m ≥ 1 such that

fm ∈ 〈f1, . . . , fr〉.
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Proof

Given a polynomial f which vanishes at every common zero of the polynomials

f1, . . . , fr , we must show that there exists an integer m ≥ 1 and polynomials

A1, . . . , Ar such that

fm = A1f1 + A2f2 + . . . + Arfr

To show this, we consider the ideal

Ĩ = 〈f1, . . . , fr, 1− yf〉 ⊂ k[x1, . . . , xn, y].

We claim that V(Ĩ) = ∅.

To see this, let (a1, . . . , an, an+1) ∈ kn+1. Either

• (a1, . . . , an) is a common zero of f1, . . . , fr , or

• (a1, . . . , an) is not a common zero of f1, . . . , fr .

In the first case f(a1, . . . , an) since f vanishes at every common zero of f1, . . . , fr .

Thus, 1− yf = 1− an+1f(a1, . . . , an) = 1 6= 0 at the point (a1, . . . , an, an+1).
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Proof(2)

In the second case, for some fi, fi(a1, . . . , an) 6= 0. If we think of fi as a polynomial

with n + 1 variables which doesn’t depend on the last variable, we have

fi(a1, . . . , an, an+1) 6= 0.

Because one of the two cases applies for any (a1, . . . , an, an+1), V(Ĩ) must be

empty. We now apply the Weak Nullstellensatz to conclude that 1 ∈ Ĩ . That is,

1 =
s∑

i=1

pi(x1, . . . , xn, y)fi + q(x1, . . . , xn, y)(1− yf)

for some polynomials pi, q ∈ k[x1, . . . , xn, y]. Now set y = 1/f(x1, . . . , xn). Then

we get

1 =
s∑

i=1

pi(x1, . . . , xn, 1/f)fi.

If we multiply both sides by fm, where m is chosen high enough to clear all the

denominators, we have for some Ai ∈ k[x1, . . . , xn]:

fm =
s∑

i=1

Aifi.
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Radical Ideals

Definition 4 An ideal I is radical if fm ∈ I for any integer m ≥ 1 implies that f ∈ I .

We also define the operation of taking the radical of an ideal:

Definition 5 Let I ⊂ k[x1, . . . , xn] be an ideal. The radical of I , denoted
√

I , is the

set

{f : fm ∈ I for some integer m ≥ 1}.

For an arbitrary ideal, the computation of a basis for a radical is quite complicated.

Fortunately, it is simpler for principal ideals:√
〈f〉 =

√
〈fa1

1 fa2
2 · · · far

r 〉 = 〈f1f2 · · · fr〉

Hilbert’s Nullstellensatz (in terms of ideals) states that

√
I = I(V(I)).
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Sums of Ideals

Definition 6 If I and J are ideals in k[x1, . . . , xn], then the sum of I and J , denoted

I + J , is the set

I + J = {f + g : f ∈ I and g ∈ J}.

If I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉, then I + J = 〈f1, . . . , fr, g1, . . . , gs〉.

The corresponding operation on varieties is intersection:

V(I + J) = V(I) ∩V(J)

x

y

z

V(y-x2)

x

y

z

V(z-x3)

x

y

z

V(y-x2, z-x3)
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Products of Ideals

Definition 7 If I and J are ideals in k[x1, . . . , xn], then the product of I and J ,

denoted I · J or short IJ , is the set

I · J = {fg : f ∈ I and g ∈ J}.

If I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉, then

IJ = 〈figj : 1 ≤ i ≤ n, 1 ≤ j ≤ m〉.

The corresponding operation on varieties is union:

V(IJ) = V(I) ∪V(J)

Example: 〈x, y〉 · 〈z〉 = 〈xz, yz〉.
V(xz, yz) is the union of the z-axis V(x, y) and the xy-plane V(z).
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Intersections of Ideals

Definition 8 The intersection I ∩ J of two ideals I and J ∈ k[x1, . . . , xn] is the set

of all polynomials which belong to both I and J .

The corresponding operation on varieties is again union:

V(I ∩ J) = V(I) ∪V(J)

Calculating a basis is a bit more difficult than in the former two cases:

〈f1, . . . , fr〉 ∩ 〈g1, . . . , gs〉 =

〈tf1, . . . , tfr, (1− t)g1, . . . , (1− t)gs〉 ∩ k[x1, . . . , xn]

The elimination of t can be done via the elimination property of Gröbner Bases: Calculate

a Gröbner basis with lexicographic order where t > x1 > . . . > xn and drop all

polynomials which depend on t.
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The GCD of two polynomials

The intersection of two principal ideals gives the ideal generated by the lowest common

multiple of the polynomials.

〈f〉 ∩ 〈g〉 = 〈LCM(f, g)〉

Compare with product:

〈f〉 · 〈g〉 = 〈f · g〉 ⊂ 〈f〉 ∩ 〈g〉

Therefore, we can calculate the greatest common divisor of two polynomials (without

having to factorise them):

GCD(f, g) =
f · g

LCM(f, g)
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An Application from Mechanics

We have the following leverage mechanism:

(a, b) (c, d)(x, y)

(-3, 0) (3, 0)

What are the possible locations of the green point (x, y)?
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The restrictions can be described by polynomial equations:

(a + 3)2 + b2 = 62 ⇒ f1 = a2 + 6a + c2 − 27

(c− 3)2 + d2 = 62 ⇒ f2 = −6b + b2 + d2 − 27

(c− a)2 + (d− b)2 = 102 ⇒ f3 = a2 − 2ab + b2 + c2 − 2cd + d2 − 100

x = 1
2 (a + c) ⇒ f4 = a + b− 2x

y = 1
2 (b + d) ⇒ f5 = c + d− 2y

The variety V(f1, . . . , f5) ⊂ R6 generated by these polynomials describes all possible

6-tuples (a, b, c, d, x, y).

We calculate a Gröbner basis using lexicographic order with a > b > c > d > x > y.

By to the elimination property, the last element of the basis depends only on x and y:

f6 = x6 + 3x4y2 − 40x4 + 3x2y4 − 44x2y2 + 400x2 + y6 − 4y4 − 896y2



21

Plotting V(f6) gives the following picture:
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Different values for the distance between the fixed points give completely different

pictures (distance is, from left to right, 2, 10, 10.2, 16):
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