
XII International Workshop "Computer Algebra in Scientific Computing"
September 10, 2010, Tsakhkadzor, Armenia

Implementation of Some Quantum Algorithms with 

Mathematica 

Vladimir P. Gerdt 
Joint Institute for Nuclear Research, Dubna, Russia

E-mail: gerdt@jinr.ru
Alexander N. Prokopenya 

Brest State Technical University, Belarus
E-mail: prokopenya@brest.by

Initialization

Content

Motivation

Circuit model for quantum computation

Bernstein-Vazirani problem

Quantum Fourier transformation

The order-finding problem

Conclusion

Motivation
Nowadays quantum computation is a field of great interest. It is sufficient to note that amount of publications devoted to
different aspects of quantum computation grows exponentially. Main reason for this is a potential ability of a quantum computer
to do certain computational task much more efficiently than it can be done by any classical computer 
(see: Nielsen M. and Chuang I. Quantum Computation and Quantum Information. Cambridge University Press, 2000). 

Two the most famous examples of such calculations are Shor’s algorithm for efficient factorization of large integers and
Grover’s algorithm of element search in an unsorted list.

There is some progress in developing hardware, as well (see, for example, D-Wave’s 16-qubit quantum computer (from http-
://www.dwavesys.com/). 

Two topical directions of investigations in quantum computation are
i) Development of the hardware to construct a realistic quantum computer that enables to test some known quantum algorithms;
ii) Searching for the problems which can be solved efficiently with a quantum computer and design the corresponding quantum
algorithms.

As a realistic quantum computer is still not available it is expedient to use classical simulators of quantum computation to design
new and to test known efficient quantum algorithms. One such simulator, namely, the Mathematica package "QuantumCircuit",
we presented at the previous CASC’2009 conference. 
The main purpose of the present talk is to demonstrate how some quantum algorithms can be simulated with this package and to
show that such simulation helps to understand ideas of quantum computation better. 

Circuit model for quantum computation
Among several equivalent models of quantum computation the quantum circuit model is the easiest to implement, therefore

this model is widely used for quantum algorithms. Quantum circuits are also theoretically interesting as a tool for understand-
ing the power and limitations of quantum computation.

Quantum computation is composed of three basic steps: 

(i) preparation of the input state of the memory register, 

(ii) implementation of the desired algorithm (or desired unitary transformation acting on the memory register), and 

(iii) measurement of the output state. 

Elementary unit of quantum information is a quantum bit or qubit that is a two-level quantum system. It is assumed that a qubit

can be prepared, manipulated and measured in a controlled way. The state of a qubit is denoted as |a\ corresponding to standard
Dirac notation for quantum mechanical states. Two possible states for a qubit are usually denoted as |0\ and |1\, which correspond
to the states 0 and 1 for a classical bit. But in contrast to classical bits, qubit as a quantum system may exist not only in one of the

states |0\ or |1\ but also in the state |a\ being a superposition of these states
                              |a\ = Α |0\ + Β |1\,
where Α and Β are complex numbers constrained by the normalization condition Α 2 + Β 2 = 1. Thus, the state of a qubit is

represented by the vector |a\ in the two-dimensional complex vector space, where the special states |0\ and |1\ form an orthonor-
mal basis and are known as computational basis states.

A set of qubits forms a quantum memory register, where the input data and any intermediate results of computations are held. It is
shown on diagrams as a column of states of the form a j] H j = 1, 2, ..., nL from which quantum wires start, for example,

Èa1\

Èa2\

Èa3\

Èa4\

Èa\

È0\

n

Note that the term "wires" is merely used to show evolution of qubits acted on by various quantum gates.

A system of n qubits has 2 n basis states. They are obtained as tensor product of basis states |0\ and |1\ associated with all n qubits

a1\ Ä a2\Ä ... Ä an\º a1 a2 ... an\º a\n,

where the symbol Ä denotes a tensor product of vectors. 

 For n = 3, for example, they are given by

0\3 ® 80, 0, 0< ®

1
0
0
0
0
0
0
0

, 1\3 ® 80, 0, 1< ®

0
1
0
0
0
0
0
0

, ..., 7\3 ® 81, 1, 1< ®

0
0
0
0
0
0
0
1

General structure of any quantum circuit can be readily understood from the following quantum circuit.  

È0\

È0\

Èy\

È f0\

n
HÄn

X U f

The circuit is to be read from left-to-right. A memory register shown in the left-hand side of the diagram consists of a set of n
qubits and one ancillary qubit initially set in the states 0\n and 0\, respectively. Then we apply a sequence of quantum gates to

different qubits and measure their final states afterwards, showing the result on the right-hand side of the diagram as the column
of qubits y\n and f0\. 

Thus, a quantum circuit can be understood as a device consisting of logical quantum gates that are arranged in the device accord-
ing to steps in which the gates process qubits in time. 

An algorithm of computation is determined by the number of quantum gates and their sequence. 

The problem of simulating a quantum computation reduces to constructing the quantum circiut that transformes an initial state of
quantum memory register into the final state that can be measured. Such transformation is done by means of the unitary operator
which is decomposed into a sequence of single-qubit and multi-qubit gates. 

Note that our Mathematica  package "QuantumCircuit"  enables to calculate  a unitary matrix corresponding to the quantum
circuit in general case of n-qubit memory register. So we can easily calculate probabilities of its different final states.

Computing the circuit matrix
Remind that a system of n qubits has 2 n  basis states. Hence, the unitary matrix U defined by the quantum circuit with n qubits

may be represented as a 2n ´ 2n matrix with respect to these basis states.

In[5]:= mat =

1 1 C 1 C C 1

1 C N C N 1 1

H S 1 Sæ 1 S H

; circuit@mat, 8a1, a2, a3<, 8b1, b2, b3<D

Out[5]=

Èa1\

Èa2\

Èa3\

Èb1\

Èb2\

Èb3\H S Sæ S H

As the circuit is read from left-to-right and we use the matrix mat to represent the circuit, then the matrix U can be written as the
following product

U = Um .Um-1 ... U1

where U j H j = 1, 2, ..., mL is the 2n ´ 2n matrix defined by the quantum gates being in the jth column of the matrix mat and m is

a number of columns. 
(for details see: V.P. Gerdt, A.N. Prokopenya. Some algorithms for calculating unitary matrices for quantum circuits. Program-
ming and Computer Software, Vol. 36, No. 2 (2010) 111 - 116)

The unitary matrix U is computed by the function matrixU[mat]

In[6]:= matrixU@matD �� commonMatrixFactor

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

One can easily check that the matrix obtained is just the matrix corresponding to the Toffoli gate.

In[7]:= mat1 = 88C<, 8C<, 8N<<; circuit@mat1, 8a1, a2, a3<, 8b1, b2, b3<D

Out[7]=

Èa1\

Èa2\

Èa3\

Èb1\

Èb2\

Èb3\

In[8]:= 8matrixU@matD �� MatrixForm , matrixU@mat1D �� MatrixForm<

Out[8]= :

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

,

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

>

The Bernstein-Vazirani problem
Let a  be an unknown integer, 0 £ a < 2n.  Let f HxL  take any other such integer x  into the modulo-2 sum of the products of

corresponding bits a and x

f HxL = a.x º a1 x1 Å a2 x2 Å ... Å an xn

Suppose we have a subroutine that evaluates  f HxL = a.x. The circuit implementing such unitary subroutine can be represented as

a collection of the controlled-Not gates. Actually, action of the CNOT gate can be represented as

Èa\

Èx\

Èa\

Èx Å a\

Hence, if a = 0 nothing happens and CNOT gate flips the state of the second qubit |x\ if a = 1.

Considering a binary representation of the number a, for example, {1,1,0,0,1} corresponds to a = 25, one can conclude that the
function

f HxL = a.x º x1 Å x2 Å x5

can be implemented with the following quantum circuit.

Èx1\
Èx2\
Èx3\
Èx4\
Èx5\
È0\

Èx1\
Èx2\
Èx3\
Èx4\
Èx5\

Èf HxL\
Suppose that the function is hidden in the black box and the question is how many times do we have to call the function to
determine the value of a?

The mth bit of a is a .2m, since the binary expansion of 2m has 1 in position m and 0 in all the other positions. So with a classical

computer we can learn the n bits of a by applying f to the n values x = 2m, 0 £ m < n. This, or any other classical method one
can think of, requires n different invocations of the subroutine. But with a quantum computer a single invocation is enough to
determine a completely.

In[9]:= matBVproblem@a_, n_D := Block@8n1, mat0, p1<,
n1 = IntegerDigits@a, 2, nD;
p1 = Position@n1, 1D �� Flatten;

mat0 = 8Table@H, 8n + 1<D<;
Do@mat0 = Append@mat0,
Append@Table@1, 8n<D, ND �� ReplacePart@ð, p1PjT ® CD &D ,

8j, Length@p1D, 1, -1<D;
mat0 = Append@mat0, Table@H, 8n + 1<DD;
Transpose@mat0D D

In[10]:= circuit@ matBVproblem@19, 5D, 80, 0, 0, 0, 0, 1<, 8x4, x3, x2, x1, x0, fx< D

Out[10]=

È0\
È0\
È0\
È0\
È0\
È1\

Èx4\
Èx3\
Èx2\
Èx1\
Èx0\
È fx\

H

H

H

H

H

H

H

H

H

H

H

H

In[11]:= IntegerDigits@19, 2, 5D

Out[11]= 81, 0, 0, 1, 1<

Initial state of the memory register 00 ... 01\ is given by

In[12]:= initial@n_D := SparseArray@2 ® 1, 2^Hn + 1LD;

Its final state is obtained as a result of unitary transformation determined by the quantum circuit (function matrixU)

In[13]:= final@a_, n_D := matrixU@matBVproblem@a, nDD.initial@nD �� Normal

In the case of 5-bits memory register and a = 28, for example, we obtain

In[14]:= final@29, 5D

Out[14]= 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0<

In[15]:= Length@%D

Out[15]= 64

To see the number a we have to transform this vector to the binary representation a1 a2 ... an an+1\, then to remove the last digit
an+1 and to present the result a1 a2 ... an\ as a decimal number. The corresponding function num@8a1, a2, ... an, an+1<D for doing
these calculations is defined below.

In[16]:= num@x_ListD := Drop@IntegerDigits@Position@x, 1DP1, 1T - 1, 2, Log@2, Length@xDDD, -1D ��
FromDigits@ð, 2D &

In[17]:= num@final@28, 5DD

Out[17]= 28

Quantum Fourier Transform
Quantum Fourier Transform (QFT) plays a principal role in the development of efficient  quantum algorithms. It is a unitary
transformation whose action on the computational basis is given by

UFT x\n =
1

2
n�2 â

y=0

2
n-1

expH2Πi
x y

2
n

L y\n

To generate a matrix modeling a quantum circuit implementing the Fourier transform for n-qubit memory register we define the
following function

In[18]:= modelFourier@n_D := Module@8model, mm, n1<,
model = Array@mm, 8n, n Hn + 1L � 2 + Floor@n � 2D<D �. mm@i_, j_D ® 1;

n1 = 0;

Do@ Do@ If@k � 1, model@@j, n1 + 1DD = H,

Hmodel@@j, n1 + kDD = Rk; model@@j + k - 1, n1 + kDD = CL
D , 8k, n - j + 1<D;

n1 = n1 + n - j + 1, 8j, n<D;
Do@ model@@j, n1 + jDD = SW; model@@n - j + 1, n1 + jDD = SW , 8j, Floor@n � 2D<D;
model D

In the case of n = 5, for example, the corresponding matrix is given by

In[19]:= modelFourier@5D �� MatrixForm

Out[19]//MatrixForm=

H R2 R3 R4 R5 1 1 1 1 1 1 1 1 1 1 SW 1

1 C 1 1 1 H R2 R3 R4 1 1 1 1 1 1 1 SW

1 1 C 1 1 1 C 1 1 H R2 R3 1 1 1 1 1

1 1 1 C 1 1 1 C 1 1 C 1 H R2 1 1 SW

1 1 1 1 C 1 1 1 C 1 1 C 1 C H SW 1

Of course, we can easily visualize the correspnding quantum circuit with function circuit.

In[20]:= circuit@modelFourier@4D, 8a1, a2, a3, a4<, 8b1, b2, b3, b4<D

Out[20]=

Èa1\

Èa2\

Èa3\

Èa4\

Èb1\

Èb2\

Èb3\

Èb4\

H R2 R3 R4

H R2 R3

H R2

H

In[21]:= matrixU@modelFourier@3D D �� commonMatrixFactor

1

4

2 2 2 2 2 2 2 2

2 1 + ä ä 2 -1 + ä - 2 -1 - ä -ä 2 1 - ä

2 ä 2 - 2 -ä 2 2 ä 2 - 2 -ä 2

2 -1 + ä -ä 2 1 + ä - 2 1 - ä ä 2 -1 - ä

2 - 2 2 - 2 2 - 2 2 - 2

2 -1 - ä ä 2 1 - ä - 2 1 + ä -ä 2 -1 + ä

2 -ä 2 - 2 ä 2 2 -ä 2 - 2 ä 2

2 1 - ä -ä 2 -1 - ä - 2 -1 + ä ä 2 1 + ä

A time of calculation of the circuit matrix in the case of n = 10 is equal to

In[22]:= Timing@matrixU@modelFourier@10D D D

Out[22]= 862.509, SparseArray@<1 048 576>, 81024, 1024<D<

The order-finding problem
Let N0 and b < N0 be positive integers, with no common factors. 

The order of b modulo N0 is defined to be the smallest positive integer, r, such that  

br Hmod N0L = 1.

The order-finding problem is to determine the order for some specified b and N0. This problem is believed to be a hard
problem on a classical computer, in the sense that no algorithm is known to solve the problem using resources polynomial in the
OHn0L bits needed to specify the problem, where n0 is the number of bits needed to specify N0.

Note that the function f HxL = bx Hmod N0L is periodic and the order r is just its period. And one might think that it should not be

very difficult to find the period of such a periodic function. But the problem is that this function is defined on the integers and its
values within a period r are virtually random from one integer to the next, and therefore give no hint of the value of r.
As  an  example,  let  us  consider  two  coprime  integers  N0 = 1987,  b = 709  and  visualize  the  corresponding  function  
f HxL = 709x Hmod 1987L . 

In[23]:= dat1a = Table@Mod@709^k, 1987D, 8k, 0, 1000<D;
ListPlot@dat1a, Filling ® Axis, BaseStyle ® 8FontSize ® 12<D

Out[24]=

200 400 600 800 1000

500

1000

1500

2000

Obviously, it is quite difficult to find a period on this graph although it is equal to 993.

In[25]:= Position@dat1a, 1D

Out[25]= 881<, 8994<<

The best known classical algorithms for finding the period of such a function take a time that grows exponentially with n0
1�3. But

in 1994 Peter Shor discovered a quantum algorithm to find the period r, in a time that grows only a little bit faster than n3. Note
that this discovery is of considerable practical interest because the ability to find periods efficiently, combined with some number-
theoretic tricks, enables one to factor efficiently the product of two large prime numbers. 
Let us consider the mail steps in implementation of the corresponding quantum algorithm.

Step 1.

Let  n0  be  the  number  of  bits  in  N0,  so that  2n0  is  the  smallest  power of  2  that  exceeds  N0   HN0 < 2n0 L.  As  the  function

f HxL = bx Hmod N0L takes values from the interval @1, N0 - 1D the output register must contain n0  qubits and at the beginning

of calculation we set them in the state 1\. To deal with values of x between 0 and N0 the input register must contain at least n0

qubits, as well, but to increase accuracy of calculation we’ll assume that it contains n > n0  qubits. The quantum circuit imple-

menting invertible transformation f HxL = bx Hmod N0L is shown below

È j\

È1\

È j\

È f j\

n

n0 U f

 j\n  1\n0
®  j\n  b j

mod N0\n0

Note that a subroutine U f  for calculation of bx Hmod N0L can be realized efficiently with a quntum computer.

An advantage of a quantum computer over its classical counterpart is that we can transform the input register to the state being an
equally weighted superposition of all possible basis states. To do this it is sufficient to apply the Hadamard gate to every qubit of
the input register, initialized initially in the standard state 0\.

È0\

È1\

È j\

È1\

n

n0

HÄn

 0\n  1\n0
®

1

2
n�2 â

j=0

2
n-1  j\n  1\n0

Note that here we need only n Hadamard gates.

Applying then the subroutine U f  to this superposition and taking into account a linearity of U f , we obtain

1

2
n�2 â

j=0

2
n-1  j\n  fHjL\n0

=
1

2
n�2 â

j=0

2
n-1  j\n  b j

mod N0\n0

Note that the final state contains the result of all 2n  evaluations of the function f HxL = bx Hmod N0L and it is obtained after only

one run of the subroutine U f . In the classical case we would have to calculate this function 2n times, what is about 2100 » 1030 for

n = 100 qubits.

In[26]:= mat = K n HHn C M

n0 1 Uf M
O ; Show@circuit@mat, 80, 1<, 8y, f0<D , Background ® WhiteD

Out[26]=

È0\

È1\

Èy\

È f0\

n

n0

HÄn

U f

Information about the final state of the register is obtained by means of measuring it. If we apply the measurement gates to the

qubits of input register we obtain with equal probability one of the values of x from the interval @0, 2n - 1D because all states in
the superposition above have the same coefficients. Measuring qubits of the output register will give the corresponding value of

f HxL. As a result of measurement, the state of the registers reduces to x\n f HxL]
n0

 and we are no longer able to learn anything

about the values of f HxL for any other values of x anf to find the order r.

Measuring the output qubits first, we obtain one of the function f HxL values, for example f0. As this function is periodic with the

period r, there are several values of x in the interval @0, 2n - 1D, where f HxL takes the same value f0. Denoting by x0 the smallest

value of x H0 £ x0 < rL for which f Hx0L = f0 and by m the smallest integer for which x0 + m r ³ 2n, we find that

m = B
2n

r
F or m = B

2n

r
F + 1,

depending on the value of x0. Here @xD is an integer part of x �  the largest integer less than or equal to x. As a result of measure-
ment the state of the registers reduces to 

1

m

â
k=0

m-1  x0+k r\n  fHx0L\n0

This state contains information about the order r but if we measure the qubits of input register we obtain only one of the values

x0 + k r with equal probabilities. Again, this result is not sufficient to find the order r. 

Combining two parts of the order-finding algorithm, we obtain the following result after the first step.

È0\

È1\ È f0\

n

n0

HÄn

U f

 0\n  1\n0
®

1

m

â
k=0

m-1  x0+k r\n  fHx0L\n0

Note that repeating the calculation determined by the circuit above we obtain similar final state of the registers but with different

x0. So we have to construct such unitary transformation which gives us a possibility to avoid the x0  dependence of the result of
measurement. This is accomplished with the quantum Fourier transform.

Step 2.

Adding the quantum Fourier transform of the input register and its measurement afterwards, we obtain the following quantum
circuit implementing the Shor’s algorithm for order-finding.

È0\

È1\

Èy\

È f0\

n

n0

HÄn

U f

FT
È j\ S

k
Èx0+k r\

The result of application of the Fourier transfor is given by

1

m

â
k=0

m-1  x0+k r\n ®
UFT

1

m

â
k=0

m-1
1

2
n�2 â

y=0

2
n-1

expH2Πi
Hx0 + k rL y

2
n

L y\n ®

® â
y=0

2
n-1

expH2Πi
x0 y

2
n

L 1

2
n�2

m

â
k=0

m-1

expH2Πi
k r y

2
n

L y\n

We see that a random value x0 appears only in the phase factor and it doesn’t influence on the result of measurement.

Probability to get some value y as a result of measurement of the input register is given by the square of the absolute value of the

 y\n coefficient.

pHyL=È 1

2
n�2

m

â
k=0

m-1

expH2Πi
k r y

2
n

LÈ 2
=

1

2
n

m

sin
2 HΠ m r y � 2

nL
sin

2 HΠ r y � 2
nL

If r = 2l  and, hence, m = B 2n

r
F = 2n-l  then the probability pHyL becomes

pHyL=
1

2
n

m

sin
2 IΠ m y � 2

n-lM
sin

2 IΠ y � 2
n-lM =

1

r
∆

y, j 2
n-l, j=0,1,...,r-1

It means that measuring the final state of the input register we can obtain only some multiple of 2n-l =
2n

r
 with equal probabilities

1

r
. Then we can easily calculate r =

2n

y
j, H j = 0, 1, ..., r - 1L with a classical computer and choose such value of the factor j for

which br Hmod N0L = 1.

But probability for the period r to be a power of 2 is extremely small and usually the ratio 2n � r turns out to be a rational number. 

To estimate probabilities of different final states of the input register let us consider the function 

g HxL =
1

m

sin2 HΠ m xL
sin2 HΠ xL

,

 where x = r y � 2n. The corresponding graph is shown below.

In[27]:= ManipulateBPlotB
Sin@Π m xD^2
m Sin@Π xD^2

, 8x, 0, 1.2<, PlotRange ® All, PlotStyle ® 8Thick<F,

8m, 1, 20, 1<, ControlPlacement ® TopF

Out[27]=

m

15

0.2 0.4 0.6 0.8 1.0 1.2

2

4

6

8

10

12

14

Obviously, the function is periodic with the period 1. It takes maximum values g = m for x = 0, 1, 2, ... and has m - 1 zero

between each pair of the neighbouring maxima in the points x =
1

m
, 2

m
, ..., m-1

m
, m+1

m
, ... . Assuming r << 2n, one can readily

see that for integers y j = B 2n

r
F j, H j = 0, 1, 2, ..., r - 1L the corresponding values x j =

r y j

2n =
@2n�rD
2n�r

j will be very close to the

integers  j = 1, 2, ..., where the function gHxL takes maxima. Therefore,  measuring the input register will give us one of the

values  y j = B 2n

r
F j, H j = 0, 1, 2, ..., r - 1L with high probability. Then we can easily calculate the ratio 

y j

2n  which gives approxi-

mation for the ratio 
j

r
 with accuracy

yj

2n
-
j

r
=

j

r

@2n � rD
2n � r

- 1 £
j

r

1 � 2
2n � r

=
j

2n+1
<

r

2n+1
.

As the order r is determined by the function f HxL = bx Hmod N0L we have to take more qubits in the input register to increase the

accuracy of the period finding. 

Example. 

Let us consider an integer N0 = 13, for example, and choose some b < N0, which has no common factors with N0. Measuring

the output register, we obtain some value of the function f HxL = bx Hmod N0L

In[31]:= N0 = 13; b = 7;

dat1a = Table@Mod@b^k, N0D, 8k, 0, 2^5 - 1<D;
f0a = dat1aP RandomInteger@2^5 - 1D T

Out[33]= 11

Then we define the state of the input register after measurement and construct the corresponding normalized vector in the 2n

dimensional space.

In[34]:= pos1 = Position@dat1a, f0aD;

initial1 = SparseArrayBTableBpos1Pj, 1T ®
1

Length@pos1D
, 8j, Length@pos1D<F, 2^5F;

In[36]:= initial1 �� Normal

Out[36]= :0, 0, 0, 0, 0,
1

3
, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0,
1

3
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1

3
, 0, 0>

The next step is to apply the Fourier transform to this vector.

In[37]:= FTransform1 = matrixU@modelFourier@5DD;
finalFourier1 = FTransform1.initial1;

Square of the absolute value of each component of the vector obtained after the Forier transform gives a probability to get the
corresponding state as a result of measurement of the input register. One can easily check that total probability is equal to 1.

In[39]:= finalFourier1.Conjugate@finalFourier1D �� N@ð, 25D &

Out[39]= 1.0000000000000000000000000 + 0. ´ 10-26
ä

Now we can visualize the probability distribution of different final states of the input register.

In[40]:= dat2a = Table@8j - 1, finalFourier1@@jDD Conjugate@ finalFourier1@@jDD D<,
8j, Length@finalFourier1D<D;

ListPlot@dat2a, PlotStyle ® 88Black, PointSize@0.015D<<, PlotRange ® All,

Filling ® Axis, AxesLabel ® 8"k", "P"<, FillingStyle ® BlackD

Out[41]=

5 10 15 20 25 30
k

0.02

0.04

0.06

0.08

P

We have four points corresponding to maximum probability but other probabilities are also quite high what means that accuracy
of the period finding is quite small. The reason of this is a small number of qubits in the input register Hn = n0L.
Now we double the number of qubits in the input register Hn = 2 n0L and repeat the calculation for the same numbers N0 and b.

In[44]:= dat1 = Table@Mod@b^k, N0D, 8k, 0, 2^10 - 1<D;
f0 = dat1P RandomInteger@2^10 - 1D T

Out[45]= 3

Again, the result of measurement of the output register is chosen randomly and the input register jumps to the state initial.

In[46]:= pos = Position@dat1, f0D;

initial = SparseArrayBTableBposPj, 1T ®
1

Length@posD
, 8j, Length@posD<F, 2^10F;

Then we apply Fourier transform to the input qubits and measure the result.

In[48]:= FTransform = matrixU@modelFourier@10DD;
finalFourier = FTransform.initial;

In[50]:= finalFourier.Conjugate@finalFourierD �� N@ð, 25D &

Out[50]= 1.0000000000000000000000000 + 0. ´ 10-26
ä

In[51]:= dat2 = Table@
8j - 1, finalFourier@@jDD Conjugate@ finalFourier@@jDD D<, 8j, Length@finalFourierD<D;

ListPlot@dat2, PlotStyle ® 88Black, PointSize@0.015D<<, PlotRange ® All,

Filling ® Axis, AxesLabel ® 8"k", "P"<, FillingStyle ® BlackD

Out[52]=

200 400 600 800 1000
k

0.02

0.04

0.06

0.08

P

In[53]:= dat3 = Table@N@dat2Pj, 2T, 25D �� Chop, 8j, Length@finalFourierD<D;
Position@dat3, Max@dat3DD

Out[54]= 881<, 8257<, 8513<, 8769<<

In[55]:= Rationalize@256. � 2^10, 0.01D

Out[55]=
1

4

In[56]:= Table@84 k, Mod@b^H4 kL, N0D<, 8k, 0, 10<D

Out[56]= 880, 1<, 84, 9<, 88, 3<, 812, 1<, 816, 9<,
820, 3<, 824, 1<, 828, 9<, 832, 3<, 836, 1<, 840, 9<<

Now we see that period is equal to 12. It is correct number what can be seen from the set of the function values.

In[57]:= Position@dat1, 1D

Out[57]= 881<, 813<, 825<, 837<, 849<, 861<, 873<, 885<, 897<, 8109<, 8121<, 8133<, 8145<, 8157<,
8169<, 8181<, 8193<, 8205<, 8217<, 8229<, 8241<, 8253<, 8265<, 8277<, 8289<, 8301<,
8313<, 8325<, 8337<, 8349<, 8361<, 8373<, 8385<, 8397<, 8409<, 8421<, 8433<, 8445<,
8457<, 8469<, 8481<, 8493<, 8505<, 8517<, 8529<, 8541<, 8553<, 8565<, 8577<, 8589<,
8601<, 8613<, 8625<, 8637<, 8649<, 8661<, 8673<, 8685<, 8697<, 8709<, 8721<, 8733<,
8745<, 8757<, 8769<, 8781<, 8793<, 8805<, 8817<, 8829<, 8841<, 8853<, 8865<, 8877<,
8889<, 8901<, 8913<, 8925<, 8937<, 8949<, 8961<, 8973<, 8985<, 8997<, 81009<, 81021<<

Conclusion
In the present talk we have demonstrated application of our Mathematica package to simulation of quantum circuits. 
Note that the package provides a user-friendly graphical interface to specify a quantum circuit, to draw it, and to construct the
corresponding unitary matrix for quantum computation defined by the circuit. The matrix is computed by means of the linear
algebra tools built into Mathematica. 
As a result we can evaluate probability of different results after measurement and to check different quantum algorithms. 


